These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 3093739)
1. Gangliosides in human and monkey lenses. Sudo K; Sugai M; Komoto M; Asou H; Hirano S Jpn J Ophthalmol; 1986; 30(2):197-202. PubMed ID: 3093739 [TBL] [Abstract][Full Text] [Related]
2. Increase in lens gangliosides due to aging and cataract progression in human senile cataract. Ogiso M; Saito N; Sudo K; Kubo H; Hirano S; Komoto M Invest Ophthalmol Vis Sci; 1990 Oct; 31(10):2171-9. PubMed ID: 2211013 [TBL] [Abstract][Full Text] [Related]
3. [Gangliosides in human senile cataractous, monkey, and rat lenses]. Saito N Nippon Ganka Gakkai Zasshi; 1991 May; 95(5):468-73. PubMed ID: 1872219 [TBL] [Abstract][Full Text] [Related]
4. Gangliosides in normal and cataractous lenses of several species. Sarkar CP; Cenedella RJ Biochim Biophys Acta; 1982 Jun; 711(3):503-8. PubMed ID: 7104379 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866 [TBL] [Abstract][Full Text] [Related]
6. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
7. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
8. Ganglioside composition in human cataractous nuclei. Swindell RT; Harris H; Buchanan L; Bell C; Albers-Jackson B Ophthalmic Res; 1988; 20(4):232-6. PubMed ID: 3186194 [TBL] [Abstract][Full Text] [Related]
9. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses. Srivastava OP; Srivastava K Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643 [TBL] [Abstract][Full Text] [Related]
10. Freezable and non-freezable water content of cataractous human lenses. Bettelheim FA; Ali S; White O; Chylack LT Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):122-5. PubMed ID: 3941033 [TBL] [Abstract][Full Text] [Related]
11. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins. Kodama T; Wong R; Takemoto L Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549 [TBL] [Abstract][Full Text] [Related]
12. Identification and synthetic pathway of sialyl-Lewis(x)-containing neolacto-series gangliosides in lens tissues. 2. Enzymatic synthesis of sialyl-Lewis(x) gangliosides in monkey and rat lenses. Ogiso M; Komoto M; Hoshi M Biochim Biophys Acta; 1996 Jan; 1315(1):29-36. PubMed ID: 8611643 [TBL] [Abstract][Full Text] [Related]
13. Comparison of d-aspartic acid contents in alpha A-crystallin from normal and age-matched cataractous human lenses. Fujii N; Takemoto LJ; Matsumoto S; Hiroki K; Boyle D; Akaboshi M Biochem Biophys Res Commun; 2000 Nov; 278(2):408-13. PubMed ID: 11097850 [TBL] [Abstract][Full Text] [Related]
14. Reduced, oxidized, and protein-bound glutathione concentrations in normal and cataractous lenses in the dog. Gelatt KN; Bruss M; DeCostanza SM; Noonan NE; Das ND; Wolf ED Am J Vet Res; 1982 Jul; 43(7):1215-7. PubMed ID: 7103204 [TBL] [Abstract][Full Text] [Related]
15. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
17. Free and bound water in normal and cataractous human lenses. Heys KR; Friedrich MG; Truscott RJ Invest Ophthalmol Vis Sci; 2008 May; 49(5):1991-7. PubMed ID: 18436831 [TBL] [Abstract][Full Text] [Related]
18. Age-related changes in ganglioside composition in human lens. Ogiso M; Komoto M; Okinaga T; Koyota S; Hoshi M Exp Eye Res; 1995 Mar; 60(3):317-23. PubMed ID: 7789411 [TBL] [Abstract][Full Text] [Related]
19. A fluorescent carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in human lens. Manabe S; Wada O; Urban RC Exp Eye Res; 1993 Sep; 57(3):319-24. PubMed ID: 8224019 [TBL] [Abstract][Full Text] [Related]
20. Deamidation of alpha-A crystallin from nuclei of cataractous and normal human lenses. Takemoto L; Boyle D Mol Vis; 1999 Feb; 5():2. PubMed ID: 10085374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]