BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 30937823)

  • 1. Cellular energetics and mitochondrial uncoupling in canine aging.
    Nicholatos JW; Robinette TM; Tata SVP; Yordy JD; Francisco AB; Platov M; Yeh TK; Ilkayeva OR; Huynh FK; Dokukin M; Volkov D; Weinstein MA; Boyko AR; Miller RA; Sokolov I; Hirschey MD; Libert S
    Geroscience; 2019 Apr; 41(2):229-242. PubMed ID: 30937823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs.
    Jimenez AG; Winward J; Beattie U; Cipolli W
    PLoS One; 2018; 13(4):e0195832. PubMed ID: 29694441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3.
    Muid KA; Kimyon Ö; Reza SH; Karakaya HC; Koc A
    Gene; 2019 Jul; 706():172-180. PubMed ID: 31082499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncoupling protein-2 and the potential link between metabolism and longevity.
    Andrews ZB
    Curr Aging Sci; 2010 Jul; 3(2):102-12. PubMed ID: 20158496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila.
    Ballard JW; Melvin RG; Miller JT; Katewa SD
    Aging Cell; 2007 Oct; 6(5):699-708. PubMed ID: 17725690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial and cytoplasmic ROS have opposing effects on lifespan.
    Schaar CE; Dues DJ; Spielbauer KK; Machiela E; Cooper JF; Senchuk M; Hekimi S; Van Raamsdonk JM
    PLoS Genet; 2015 Feb; 11(2):e1004972. PubMed ID: 25671321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The paradox of mitochondrial dysfunction and extended longevity.
    Munkácsy E; Rea SL
    Exp Gerontol; 2014 Aug; 56():221-33. PubMed ID: 24699406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomics of aging in primary fibroblasts from small and large breed dogs.
    Brookes PS; Jimenez AG
    Geroscience; 2021 Aug; 43(4):1683-1696. PubMed ID: 34132979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?
    Barja G
    Biol Rev Camb Philos Soc; 2004 May; 79(2):235-51. PubMed ID: 15191224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derived variants at six genes explain nearly half of size reduction in dog breeds.
    Rimbault M; Beale HC; Schoenebeck JJ; Hoopes BC; Allen JJ; Kilroy-Glynn P; Wayne RK; Sutter NB; Ostrander EA
    Genome Res; 2013 Dec; 23(12):1985-95. PubMed ID: 24026177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic plasticity, energy allocations, and the extended longevity phenotypes of Drosophila.
    Arking R; Buck S; Novoseltev VN; Hwangbo DS; Lane M
    Ageing Res Rev; 2002 Apr; 1(2):209-28. PubMed ID: 12039439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes.
    Gangloff EJ; Schwartz TS; Klabacka R; Huebschman N; Liu AY; Bronikowski AM
    Exp Gerontol; 2020 Aug; 137():110967. PubMed ID: 32387125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression.
    Ogburn CE; Carlberg K; Ottinger MA; Holmes DJ; Martin GM; Austad SN
    J Gerontol A Biol Sci Med Sci; 2001 Nov; 56(11):B468-74. PubMed ID: 11682567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity?
    Pamplona R; Jové M; Mota-Martorell N; Barja G
    FEBS J; 2021 Dec; 288(23):6652-6673. PubMed ID: 33455045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production?
    Csiszar A; Podlutsky A; Podlutskaya N; Sonntag WE; Merlin SZ; Philipp EE; Doyle K; Davila A; Recchia FA; Ballabh P; Pinto JT; Ungvari Z
    J Gerontol A Biol Sci Med Sci; 2012 Aug; 67(8):841-52. PubMed ID: 22219516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The companion dog as a unique translational model for aging.
    Mazzatenta A; Carluccio A; Robbe D; Giulio CD; Cellerino A
    Semin Cell Dev Biol; 2017 Oct; 70():141-153. PubMed ID: 28803893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans.
    Dues DJ; Schaar CE; Johnson BK; Bowman MJ; Winn ME; Senchuk MM; Van Raamsdonk JM
    Free Radic Biol Med; 2017 Jul; 108():362-373. PubMed ID: 28392283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the mechanisms responsible for lower ROS release rates in liver mitochondria from the long-lived house sparrow (Passer domesticus) and big brown bat (Eptesicus fuscus) compared to the short-lived mouse (Mus musculus).
    Brown JC; McClelland GB; Faure PA; Klaiman JM; Staples JF
    Mech Ageing Dev; 2009 Aug; 130(8):467-76. PubMed ID: 19464314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scan for genes associated with cancer mortality and longevity in pedigree dog breeds.
    Doherty A; Lopes I; Ford CT; Monaco G; Guest P; de Magalhães JP
    Mamm Genome; 2020 Aug; 31(7-8):215-227. PubMed ID: 32661568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of the mitochondrial phenotype and slow development of oxidative biomarkers of aging in long-lived Mclk1+/- mice.
    Lapointe J; Stepanyan Z; Bigras E; Hekimi S
    J Biol Chem; 2009 Jul; 284(30):20364-74. PubMed ID: 19478076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.