BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30938076)

  • 1. Unsupervised organization of cervical cells using bright-field and single-shot digital holographic microscopy.
    Mangal J; Monga R; Mathur SR; Dinda AK; Joseph J; Ahlawat S; Khare K
    J Biophotonics; 2019 Aug; 12(8):e201800409. PubMed ID: 30938076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering.
    Plissiti ME; Nikou C; Charchanti A
    IEEE Trans Inf Technol Biomed; 2011 Mar; 15(2):233-41. PubMed ID: 20952343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.
    Greenbaum A; Zhang Y; Feizi A; Chung PL; Luo W; Kandukuri SR; Ozcan A
    Sci Transl Med; 2014 Dec; 6(267):267ra175. PubMed ID: 25520396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated classification of cell morphology by coherence-controlled holographic microscopy.
    Strbkova L; Zicha D; Vesely P; Chmelik R
    J Biomed Opt; 2017 Aug; 22(8):1-9. PubMed ID: 28836416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-portable pixel super-resolution colour microscope.
    Greenbaum A; Akbari N; Feizi A; Luo W; Ozcan A
    PLoS One; 2013; 8(9):e76475. PubMed ID: 24086742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital holographic microscopy with dual-wavelength phase unwrapping.
    Parshall D; Kim MK
    Appl Opt; 2006 Jan; 45(3):451-9. PubMed ID: 16463728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberration-free digital holographic phase imaging using the derivative-based principal component analysis.
    Lai X; Xiao S; Xu C; Fan S; Wei K
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33840164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepPap: Deep Convolutional Networks for Cervical Cell Classification.
    Zhang L; Le Lu ; Nogues I; Summers RM; Liu S; Yao J
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1633-1643. PubMed ID: 28541229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue.
    Luck BL; Carlson KD; Bovik AC; Richards-Kortum RR
    IEEE Trans Image Process; 2005 Sep; 14(9):1265-76. PubMed ID: 16190463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The significance of documenting clinical appearance of the uterine cervix in the cervical cytology form.
    Al-Kadri HM; Hajeer AH; Al-Hawashim NS; Salem HH
    Saudi Med J; 2006 Nov; 27(11):1698-702. PubMed ID: 17106544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of nuclear classification in cervical smear images. Quantitative impact of computational deconvolution and 3-D feature computation.
    Mackin RW; Newton LM; Turner JN; Holmes TJ; Roysam B
    Anal Quant Cytol Histol; 1998 Apr; 20(2):77-91. PubMed ID: 9569965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.
    Doblas A; Sánchez-Ortiga E; Martínez-Corral M; Saavedra G; Garcia-Sucerquia J
    J Biomed Opt; 2014 Apr; 19(4):046022. PubMed ID: 24781590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition.
    Strbkova L; Carson BB; Vincent T; Vesely P; Chmelik R
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32812412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contextual analysis and intermediate cell markers enhance high-resolution cell image analysis for automated cervical smear diagnosis.
    Zahniser DJ; Wong KL; Brenner JF; Ball HG; Garcia GL; Hutchinson ML
    Cytometry; 1991; 12(1):10-4. PubMed ID: 1705494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.
    Nguyen T; Bui V; Lam V; Raub CB; Chang LC; Nehmetallah G
    Opt Express; 2017 Jun; 25(13):15043-15057. PubMed ID: 28788938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging.
    Langehanenberg P; Kemper B; Dirksen D; von Bally G
    Appl Opt; 2008 Jul; 47(19):D176-82. PubMed ID: 18594573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.