BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30938076)

  • 21. Detection of endocervical component by PAPNET system on negative cervical smears.
    Ashfaq R; Solares B; Saboorian MH
    Diagn Cytopathol; 1996 Aug; 15(2):121-3. PubMed ID: 8872433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-shot, dual-mode, water-immersion microscopy platform for biological applications.
    Picazo-Bueno JÁ; Cojoc D; Iseppon F; Torre V; Micó V
    Appl Opt; 2018 Jan; 57(1):A242-A249. PubMed ID: 29328152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segmentation of Papanicolaou smear images.
    Lin YK; Fu KS
    Anal Quant Cytol; 1981 Sep; 3(3):201-6. PubMed ID: 7294539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate color imaging of pathology slides using holography and absorbance spectrum estimation of histochemical stains.
    Zhang Y; Liu T; Huang Y; Teng D; Bian Y; Wu Y; Rivenson Y; Feizi A; Ozcan A
    J Biophotonics; 2019 Mar; 12(3):e201800335. PubMed ID: 30353662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Holographic neural networks as nonlinear discriminants for chemical applications.
    Burden FR
    J Chem Inf Comput Sci; 1998; 38(1):47-53. PubMed ID: 9461643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multi-spectral approach for scene analysis of cervical cytology smears.
    Aggarwal RK; Bacus JW
    J Histochem Cytochem; 1977 Jul; 25(7):668-80. PubMed ID: 330720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring neural cell dynamics with digital holographic microscopy.
    Marquet P; Depeursinge C; Magistretti PJ
    Annu Rev Biomed Eng; 2013; 15():407-31. PubMed ID: 23662777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics.
    Moon I; Jaferzadeh K; Ahmadzadeh E; Javidi B
    J Biophotonics; 2018 Dec; 11(12):e201800116. PubMed ID: 30027630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-line digital holographic imaging in volume holographic microscopy.
    Zhai X; Lin WT; Chen HH; Wang PH; Yeh LH; Tsai JC; Singh VR; Luo Y
    Opt Lett; 2015 Dec; 40(23):5542-5. PubMed ID: 26625046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in nucleic acid and protein content in nuclei of human cervical cells.
    Bhattacharya PK; Pappelis AJ
    Mech Ageing Dev; 1984 Oct; 27(2):135-42. PubMed ID: 6208441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.
    Vasudevan S; Chen GC; Lin Z; Ng BK
    Appl Opt; 2015 May; 54(14):4478-84. PubMed ID: 25967505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional quantitative phase imaging of blood coagulation structures by optical projection tomography in flow cytometry using digital holographic microscopy.
    Funamizu H; Aizu Y
    J Biomed Opt; 2018 Oct; 24(3):1-6. PubMed ID: 30302967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An image analysis system for cervical cytology automation using nuclear DNA content.
    Tucker JH
    J Histochem Cytochem; 1979 Jan; 27(1):613-20. PubMed ID: 374629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Label-free observation of three-dimensional morphology change of a single PC12 cell by digital holographic microscopy.
    Mir TA; Shinohara H
    Anal Biochem; 2012 Oct; 429(1):53-7. PubMed ID: 22796499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wide field of view common-path lateral-shearing digital holographic interference microscope.
    Vora P; Trivedi V; Mahajan S; Patel N; Joglekar M; Chhaniwal V; Moradi AR; Javidi B; Anand A
    J Biomed Opt; 2017 Dec; 22(12):1-11. PubMed ID: 29235271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy.
    Janicke B; Kårsnäs A; Egelberg P; Alm K
    Cytometry A; 2017 May; 91(5):460-469. PubMed ID: 28437571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time, high-definition, three-dimensional microscopy for evaluating problematic cervical Papanicolaou smears classified as atypical squamous cells of undetermined significance.
    Ramsamooj R; Doolin E; Greenberg G; Catalano E; Hewitt CW
    Cancer; 2002 Jun; 96(3):181-6. PubMed ID: 12115307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of the MAGISCAN image analyser in automated uterine cancer cytology.
    Pycock D; Taylor CJ
    Anal Quant Cytol; 1980 Sep; 2(3):195-202. PubMed ID: 7425440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on Papanicolaou staining. I. Visible-light spectra of stained cervical cells.
    Galbraith W; Marshall PN; Lee ES; Bacus JW
    Anal Quant Cytol; 1979; 1(3):160-8. PubMed ID: 94521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of human papillomavirus type 16/18 DNA in cervicovaginal cells by fluorescence based in situ hybridization and automated image cytometry.
    Siadat-Pajouh M; Periasamy A; Ayscue AH; Moscicki AB; Palefsky JM; Walton L; DeMars LR; Power JD; Herman B; Lockett SJ
    Cytometry; 1994 Mar; 15(3):245-57. PubMed ID: 8187584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.