These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid. Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639 [TBL] [Abstract][Full Text] [Related]
3. Transition metal pincer catalysts for formic acid dehydrogenation: a mechanistic perspective. Kumar NS; Adhikary A Front Chem; 2024; 12():1452408. PubMed ID: 39257650 [TBL] [Abstract][Full Text] [Related]
4. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid. Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204 [TBL] [Abstract][Full Text] [Related]
10. DFT Mechanistic Investigation on Manganese Pincer Complex Catalysed Cross-Coupling of Methanol with Benzyl Alcohol to Afford Methyl Benzoate. Ali Q; Li Z; Zhang L; Luo C; Pu M; Lei M Chemistry; 2023 Jun; 29(35):e202300565. PubMed ID: 37026372 [TBL] [Abstract][Full Text] [Related]
11. Control of Catalyst Isomers Using an Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015 [TBL] [Abstract][Full Text] [Related]
12. Protic NNN and NCN Pincer-Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid. Nakahara Y; Toda T; Matsunami A; Kayaki Y; Kuwata S Chem Asian J; 2018 Jan; 13(1):73-80. PubMed ID: 29140603 [TBL] [Abstract][Full Text] [Related]
13. Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic Ir Wang WH; Wang H; Yang Y; Lai X; Li Y; Wang J; Himeda Y; Bao M ChemSusChem; 2020 Sep; 13(18):5015-5022. PubMed ID: 32662920 [TBL] [Abstract][Full Text] [Related]
14. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization. Zell T; Milstein D Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678 [TBL] [Abstract][Full Text] [Related]
15. Iridium-Catalyzed Dehydrogenation in a Continuous Flow Reactor for Practical On-Board Hydrogen Generation From Liquid Organic Hydrogen Carriers. Polukeev AV; Wallenberg R; Uhlig J; Hulteberg CP; Wendt OF ChemSusChem; 2022 Apr; 15(8):e202200085. PubMed ID: 35263025 [TBL] [Abstract][Full Text] [Related]
16. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid. Ge H; Jing Y; Yang X Inorg Chem; 2016 Dec; 55(23):12179-12184. PubMed ID: 27934414 [TBL] [Abstract][Full Text] [Related]
17. Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions. Zell T; Butschke B; Ben-David Y; Milstein D Chemistry; 2013 Jun; 19(25):8068-72. PubMed ID: 23649981 [TBL] [Abstract][Full Text] [Related]
18. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand. Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821 [TBL] [Abstract][Full Text] [Related]
19. A Stable Nanocobalt Catalyst with Highly Dispersed CoN Tang C; Surkus AE; Chen F; Pohl MM; Agostini G; Schneider M; Junge H; Beller M Angew Chem Int Ed Engl; 2017 Dec; 56(52):16616-16620. PubMed ID: 29115056 [TBL] [Abstract][Full Text] [Related]
20. A Reversible Liquid-to-Liquid Organic Hydrogen Carrier System Based on Ethylene Glycol and Ethanol. Zhou QQ; Zou YQ; Ben-David Y; Milstein D Chemistry; 2020 Dec; 26(67):15487-15490. PubMed ID: 33459426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]