These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30938740)

  • 1. Metal-organic framework derived 3D graphene decorated NaTi
    Wang L; Huang Z; Wang B; Luo H; Cheng M; Yuan Y; He K; Foroozan T; Deivanayagam R; Liu G; Wang D; Shahbazian-Yassar R
    Nanoscale; 2019 Apr; 11(15):7347-7357. PubMed ID: 30938740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance: NaTi2(PO4)3 as an example.
    Jiang Y; Zeng L; Wang J; Li W; Pan F; Yu Y
    Nanoscale; 2015 Sep; 7(35):14723-9. PubMed ID: 26284915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purifying the Phase of NaTi
    Wang L; Huang Z; Wang B; Liu G; Cheng M; Yuan Y; Luo H; Gao T; Wang D; Shahbazian-Yassar R
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10663-10671. PubMed ID: 30807096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NASICON-Structured NaTi
    Wu M; Ni W; Hu J; Ma J
    Nanomicro Lett; 2019 May; 11(1):44. PubMed ID: 34138016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NASICON-Structured NaTi2(PO4)3@C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries.
    Wang D; Liu Q; Chen C; Li M; Meng X; Bie X; Wei Y; Huang Y; Du F; Wang C; Chen G
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2238-46. PubMed ID: 26720111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting Lithium Storage Properties of MOF Derivatives through a Wet-Spinning Assembled Fiber Strategy.
    Zhang L; Liu W; Shi W; Xu X; Mao J; Li P; Ye C; Yin R; Ye S; Liu X; Cao X; Gao C
    Chemistry; 2018 Sep; 24(52):13792-13799. PubMed ID: 29992663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous NaTi
    Wei P; Liu Y; Wang Z; Huang Y; Jin Y; Liu Y; Sun S; Qiu Y; Peng J; Xu Y; Sun X; Fang C; Han J; Huang Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27039-27046. PubMed ID: 29975837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NASICON-Type NaTi
    Xu S; Chen H; Zhang X; Zhou M; Zhou H
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47764-47778. PubMed ID: 37773334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries.
    Pang G; Yuan C; Nie P; Ding B; Zhu J; Zhang X
    Nanoscale; 2014 Jun; 6(12):6328-34. PubMed ID: 24755904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes.
    Wu C; Kopold P; Ding YL; van Aken PA; Maier J; Yu Y
    ACS Nano; 2015 Jun; 9(6):6610-8. PubMed ID: 26053194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrastable sodium-ion battery anode enabled by carbon-coated porous NaTi
    Man Y; Sun J; Zhao X; Duan L; Fei Y; Bao J; Mo X; Zhou X
    J Colloid Interface Sci; 2023 Apr; 635():417-426. PubMed ID: 36599240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Electrochemical Coating Mechanism of NASICON-Structured AgTi
    Wei Z; Zhang Z; Chen N; Chen G; Wang C; Du F
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5932-5938. PubMed ID: 31916741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Reversible and Ultrafast Sodium Storage in NaTi2(PO4)3 Nanoparticles Embedded in Nanocarbon Networks.
    Jiang Y; Shi J; Wang M; Zeng L; Gu L; Yu Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):689-95. PubMed ID: 26653567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interconnected NaTi
    Wang Y; Peng Z; Li Y; Li H; Jiang H; Chen L
    J Colloid Interface Sci; 2022 Nov; 626():1-12. PubMed ID: 35779373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal organic frameworks derived cobalt sulfide/reduced graphene oxide composites with fast reaction kinetic and excellent structural stability for sodium storage.
    Huang J; Tang X; Li Z; Liu K
    J Colloid Interface Sci; 2018 Dec; 532():407-415. PubMed ID: 30099304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-Scaffolded Na
    Zhang J; Fang Y; Xiao L; Qian J; Cao Y; Ai X; Yang H
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7177-7184. PubMed ID: 28186395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Supported NaTi
    Chen M; Zhou Q; Iqbal A; Liu X; Nazakat A; Yan C; Tian H; Li W; Zhang Y; Dong B; Zai J; Qian X
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50388-50396. PubMed ID: 33108718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous CuO/reduced graphene oxide composites synthesized from metal-organic frameworks as anodes for high-performance sodium-ion batteries.
    Li D; Yan D; Zhang X; Li J; Lu T; Pan L
    J Colloid Interface Sci; 2017 Jul; 497():350-358. PubMed ID: 28301830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal Organic Frameworks Derived Hierarchical Hollow NiO/Ni/Graphene Composites for Lithium and Sodium Storage.
    Zou F; Chen YM; Liu K; Yu Z; Liang W; Bhaway SM; Gao M; Zhu Y
    ACS Nano; 2016 Jan; 10(1):377-86. PubMed ID: 26592379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries.
    Zhao B; Lin B; Zhang S; Deng C
    Nanoscale; 2015 Nov; 7(44):18552-60. PubMed ID: 26490545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.