These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30938749)

  • 1. Ostwald ripening of confined nanoparticles: chemomechanical coupling in nanopores.
    Gommes CJ
    Nanoscale; 2019 Apr; 11(15):7386-7393. PubMed ID: 30938749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of formation of nanoparticles in reverse micellar systems: Ostwald ripening of silver halide particles.
    Shukla D; Joshi AA; Mehra A
    Langmuir; 2009 Apr; 25(6):3786-93. PubMed ID: 19708254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The definition of "critical radius" for a collection of nanoparticles undergoing Ostwald ripening.
    Houk LR; Challa SR; Grayson B; Fanson P; Datye AK
    Langmuir; 2009 Oct; 25(19):11225-7. PubMed ID: 19715330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle growth in supported nickel catalysts during methanation reaction--larger is better.
    Munnik P; Velthoen ME; de Jongh PE; de Jong KP; Gommes CJ
    Angew Chem Int Ed Engl; 2014 Sep; 53(36):9493-7. PubMed ID: 25044071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening.
    Verma S; Kumar S; Gokhale R; Burgess DJ
    Int J Pharm; 2011 Mar; 406(1-2):145-52. PubMed ID: 21185926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From nucleation and coarsening to coalescence in metastable liquids.
    Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190247. PubMed ID: 32279640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation and Ostwald Growth of Particles in Fe-O-Al-Ca Melt.
    Wang L; Li J; Yang S; Chen C; Jin H; Li X
    Sci Rep; 2018 Jan; 8(1):1135. PubMed ID: 29348615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Egalitarianism among Bubbles in Porous Media: An Ostwald Ripening Derived Anticoarsening Phenomenon.
    Xu K; Bonnecaze R; Balhoff M
    Phys Rev Lett; 2017 Dec; 119(26):264502. PubMed ID: 29328713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ostwald ripening in nanoalloys: when thermodynamics drives a size-dependent particle composition.
    Alloyeau D; Prévot G; Le Bouar Y; Oikawa T; Langlois C; Loiseau A; Ricolleau C
    Phys Rev Lett; 2010 Dec; 105(25):255901. PubMed ID: 21231603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy.
    Harada M; Kamigaito Y
    Langmuir; 2012 Feb; 28(5):2415-28. PubMed ID: 22200585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence.
    Madras G; McCoy BJ
    J Colloid Interface Sci; 2003 May; 261(2):423-33. PubMed ID: 16256552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetically controlled seed-mediated growth of narrow dispersed silver nanoparticles up to 120 nm: secondary nucleation, size focusing, and Ostwald ripening.
    Zong R; Wang X; Shi S; Zhu Y
    Phys Chem Chem Phys; 2014 Mar; 16(9):4236-41. PubMed ID: 24452515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ostwald-ripening and particle size focussing of sub-10 nm NaYF₄ upconversion nanocrystals.
    Rinkel T; Nordmann J; Raj AN; Haase M
    Nanoscale; 2014 Nov; 6(23):14523-30. PubMed ID: 25347027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ostwald ripening of binary alloy particles.
    Burlakov VM; Kantorovich L
    J Chem Phys; 2011 Jan; 134(2):024521. PubMed ID: 21241134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ostwald ripening in rarefied systems.
    Burlakov VM
    Phys Rev Lett; 2006 Oct; 97(15):155703. PubMed ID: 17155338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of oil type on nanoemulsion formation and Ostwald ripening stability.
    Wooster TJ; Golding M; Sanguansri P
    Langmuir; 2008 Nov; 24(22):12758-65. PubMed ID: 18850732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time and temperature effects on the digestive ripening of gold nanoparticles: is there a crossover from digestive ripening to Ostwald ripening?
    Sahu P; Prasad BL
    Langmuir; 2014 Sep; 30(34):10143-50. PubMed ID: 25111614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy.
    Meijerink MJ; de Jong KP; Zečević J
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(3):2202-2212. PubMed ID: 32010421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics.
    Gindy ME; Feuston B; Glass A; Arrington L; Haas RM; Schariter J; Stirdivant SM
    Mol Pharm; 2014 Nov; 11(11):4143-53. PubMed ID: 25317715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.