These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30939006)

  • 1. Efficient Ensemble Refinement by Reweighting.
    Köfinger J; Stelzl LS; Reuter K; Allande C; Reichel K; Hummer G
    J Chem Theory Comput; 2019 May; 15(5):3390-3401. PubMed ID: 30939006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rigorous and Efficient Method To Reweight Very Large Conformational Ensembles Using Average Experimental Data and To Determine Their Relative Information Content.
    Leung HT; Bignucolo O; Aregger R; Dames SA; Mazur A; Bernèche S; Grzesiek S
    J Chem Theory Comput; 2016 Jan; 12(1):383-94. PubMed ID: 26632648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian ensemble refinement by replica simulations and reweighting.
    Hummer G; Köfinger J
    J Chem Phys; 2015 Dec; 143(24):243150. PubMed ID: 26723635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations.
    Bottaro S; Bussi G; Kennedy SD; Turner DH; Lindorff-Larsen K
    Sci Adv; 2018 May; 4(5):eaar8521. PubMed ID: 29795785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble fits of restrained peptides' conformational equilibria to NMR data. Dependence on force fields: AMBER/8 ff03 versus ECEPP/3.
    Ciarkowski J; Łuczak S; Jagieła D; Sikorska E; Wójcik J; Oleszczuk M; Izdebski J
    J Mol Graph Model; 2012 Feb; 32():67-74. PubMed ID: 22079210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Maximum-Likelihood Approach to Force-Field Calibration.
    Zaborowski B; Jagieła D; Czaplewski C; Hałabis A; Lewandowska A; Żmudzińska W; Ołdziej S; Karczyńska A; Omieczynski C; Wirecki T; Liwo A
    J Chem Inf Model; 2015 Sep; 55(9):2050-70. PubMed ID: 26263302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring Structural Ensembles of Flexible and Dynamic Macromolecules Using Bayesian, Maximum Entropy, and Minimal-Ensemble Refinement Methods.
    Köfinger J; Różycki B; Hummer G
    Methods Mol Biol; 2019; 2022():341-352. PubMed ID: 31396910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of α-Synuclein Ensembles Against SAXS Data: Comparison of Force Fields and Methods.
    Ahmed MC; Skaanning LK; Jussupow A; Newcombe EA; Kragelund BB; Camilloni C; Langkilde AE; Lindorff-Larsen K
    Front Mol Biosci; 2021; 8():654333. PubMed ID: 33968988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metadynamic metainference: Convergence towards force field independent structural ensembles of a disordered peptide.
    Löhr T; Jussupow A; Camilloni C
    J Chem Phys; 2017 Apr; 146(16):165102. PubMed ID: 28456189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings.
    Esteban-Martín S; Fenwick RB; Salvatella X
    J Am Chem Soc; 2010 Apr; 132(13):4626-32. PubMed ID: 20222664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the structural ensembles of p53 TAD2 by molecular dynamics simulations with different force fields.
    Ouyang Y; Zhao L; Zhang Z
    Phys Chem Chem Phys; 2018 Mar; 20(13):8676-8684. PubMed ID: 29537020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Coupled Two-Dimensional Main Chain Torsional Potential in Modeling Intrinsically Disordered Proteins.
    Gao Y; Zhang C; Zhang JZ; Mei Y
    J Chem Inf Model; 2017 Feb; 57(2):267-274. PubMed ID: 28095698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1.
    Dolenc J; Missimer JH; Steinmetz MO; van Gunsteren WF
    J Biomol NMR; 2010 Jul; 47(3):221-35. PubMed ID: 20524044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refinement of Peptide Conformational Ensembles by 2D IR Spectroscopy: Application to Ala‒Ala‒Ala.
    Feng CJ; Dhayalan B; Tokmakoff A
    Biophys J; 2018 Jun; 114(12):2820-2832. PubMed ID: 29925019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-level characterization of the ensemble of the Aβ(1-42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms.
    Sgourakis NG; Merced-Serrano M; Boutsidis C; Drineas P; Du Z; Wang C; Garcia AE
    J Mol Biol; 2011 Jan; 405(2):570-83. PubMed ID: 21056574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic molecular simulations of Aβ-Zn conformational ensembles.
    Aduriz-Arrizabalaga J; Lopez X; De Sancho D
    Proteins; 2024 Jan; 92(1):134-144. PubMed ID: 37746887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach.
    Bottaro S; Bengtsen T; Lindorff-Larsen K
    Methods Mol Biol; 2020; 2112():219-240. PubMed ID: 32006288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical Guide to the Simultaneous Determination of Protein Structure and Dynamics Using Metainference.
    Löhr T; Camilloni C; Bonomi M; Vendruscolo M
    Methods Mol Biol; 2019; 2022():313-340. PubMed ID: 31396909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.