BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30939231)

  • 1. A Cobalt Catalyst Permits the Direct Hydrogenative Synthesis of 1H-Perimidines from a Dinitroarene and an Aldehyde.
    Schwob T; Ade M; Kempe R
    ChemSusChem; 2019 Jul; 12(13):3013-3017. PubMed ID: 30939231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General and selective deoxygenation by hydrogen using a reusable earth-abundant metal catalyst.
    Schwob T; Kunnas P; de Jonge N; Papp C; Steinrück HP; Kempe R
    Sci Adv; 2019 Nov; 5(11):eaav3680. PubMed ID: 31763445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes and the Direct Synthesis of Imines and Benzimidazoles from Nitroarenes and Aldehydes.
    Schwob T; Kempe R
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):15175-15179. PubMed ID: 27797434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 3,4-Dihydro-2H-Pyrroles from Ketones, Aldehydes, and Nitro Alkanes via Hydrogenative Cyclization.
    Klausfelder B; Blach P; de Jonge N; Kempe R
    Chemistry; 2022 Aug; 28(47):e202201307. PubMed ID: 35638452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General Synthesis of Secondary Alkylamines by Reductive Alkylation of Nitriles by Aldehydes and Ketones.
    Schönauer T; Thomä SLJ; Kaiser L; Zobel M; Kempe R
    Chemistry; 2021 Jan; 27(5):1609-1614. PubMed ID: 33236790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly Engineering Defective Basal Planes in Molybdenum Sulfide for the Direct Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes.
    Rodenes M; Gonell F; Martín S; Corma A; Sorribes I
    JACS Au; 2022 Mar; 2(3):601-612. PubMed ID: 35373204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoselective and Tandem Reduction of Arenes Using a Metal-Organic Framework-Supported Single-Site Cobalt Catalyst.
    Antil N; Kumar A; Akhtar N; Begum W; Chauhan M; Newar R; Rawat MS; Manna K
    Inorg Chem; 2022 Jan; 61(2):1031-1040. PubMed ID: 34967211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Active Cobalt Catalyst for the General and Selective Hydrogenation of Aromatic Heterocycles.
    Bauer C; Müller F; Keskin S; Zobel M; Kempe R
    Chemistry; 2023 May; 29(30):e202300561. PubMed ID: 36825433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.
    Manna K; Ji P; Lin Z; Greene FX; Urban A; Thacker NC; Lin W
    Nat Commun; 2016 Aug; 7():12610. PubMed ID: 27574182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese-Catalyzed Hydrogenative Desulfurization of Thioamides.
    Wang Z; Chen S; Chen C; Yang Y; Wang C
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202215963. PubMed ID: 36428247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H
    Lin C; Wan W; Wei X; Chen J
    ChemSusChem; 2021 Jan; 14(2):709-720. PubMed ID: 33226188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Active and Easily Accessible Cobalt Catalyst for Selective Hydrogenation of C═O Bonds.
    Rösler S; Obenauf J; Kempe R
    J Am Chem Soc; 2015 Jul; 137(25):7998-8001. PubMed ID: 26080036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe3O4@SiO2@KIT-6 as an Efficient and Reusable Catalyst for the Synthesis of Novel Derivatives of 3,3'-((Aryl-1-phenyl-1H-pyrazol-4- yl)methylene)bis (1H-indole).
    Nikpassand M; Fekri LZ; Nabatzadeh M
    Comb Chem High Throughput Screen; 2017; 20(6):533-538. PubMed ID: 28443502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with a well-defined iron pincer complex.
    Bornschein C; Werkmeister S; Wendt B; Jiao H; Alberico E; Baumann W; Junge H; Junge K; Beller M
    Nat Commun; 2014 Jun; 5():4111. PubMed ID: 24969371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Direct Synthesis of Imines, Benzimidazoles and Quinoxalines from Nitroarenes and Carbonyl Compounds by Selective Nitroarene Hydrogenation Employing a Reusable Iron Catalyst.
    Bäumler C; Kempe R
    Chemistry; 2018 Jun; 24(36):8989-8993. PubMed ID: 29668069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations.
    Zhang T; Manna K; Lin W
    J Am Chem Soc; 2016 Mar; 138(9):3241-9. PubMed ID: 26864496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cobalt phosphide catalyst for the hydrogenation of nitriles.
    Mitsudome T; Sheng M; Nakata A; Yamasaki J; Mizugaki T; Jitsukawa K
    Chem Sci; 2020 Jul; 11(26):6682-6689. PubMed ID: 32953029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations.
    Liu W; Sahoo B; Junge K; Beller M
    Acc Chem Res; 2018 Aug; 51(8):1858-1869. PubMed ID: 30091891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superior activity in hydrogenation of 4-nitrophenol.
    Zhang X; Wang N; Geng L; Fu J; Hu H; Zhang D; Zhu B; Carozza J; Han H
    J Colloid Interface Sci; 2018 Feb; 512():844-852. PubMed ID: 29126073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.