BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1749 related articles for article (PubMed ID: 30939415)

  • 21. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences.
    Li Z; Han P; You ZH; Li X; Zhang Y; Yu H; Nie R; Chen X
    Sci Rep; 2017 Sep; 7(1):11174. PubMed ID: 28894115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Prediction of DrugTarget Interactions Using Chemical, Biological, and Network Features.
    Cao DS; Zhang LX; Tan GS; Xiang Z; Zeng WB; Xu QS; Chen AF
    Mol Inform; 2014 Oct; 33(10):669-81. PubMed ID: 27485302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drug-Target Interaction Prediction Based on Drug Fingerprint Information and Protein Sequence.
    Li Y; Huang YA; You ZH; Li LP; Wang Z
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31430892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization.
    Xia LY; Yang ZY; Zhang H; Liang Y
    J Chem Inf Model; 2019 Jul; 59(7):3340-3351. PubMed ID: 31260620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.
    Wang L; You ZH; Li LP; Yan X; Zhang W
    Sci Rep; 2020 Apr; 10(1):6641. PubMed ID: 32313024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Target Features for Predicting Drug-Target Interactions by Deep Neural Network Based on Large-Scale Drug-Induced Transcriptome Data.
    Lee H; Kim W
    Pharmaceutics; 2019 Aug; 11(8):. PubMed ID: 31382356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Ensemble Learning-Based Method for Inferring Drug-Target Interactions Combining Protein Sequences and Drug Fingerprints.
    Zhao ZY; Huang WZ; Zhan XK; Pan J; Huang YA; Zhang SW; Yu CQ
    Biomed Res Int; 2021; 2021():9933873. PubMed ID: 33987446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features.
    Chu Y; Kaushik AC; Wang X; Wang W; Zhang Y; Shan X; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Jan; 22(1):451-462. PubMed ID: 31885041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions.
    Song T; Zhang X; Ding M; Rodriguez-Paton A; Wang S; Wang G
    Methods; 2022 Aug; 204():269-277. PubMed ID: 35219861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inferring Interactions between Novel Drugs and Novel Targets via Instance-Neighborhood-Based Models.
    Shi JY; Li JX; Chen BL; Zhang Y
    Curr Protein Pept Sci; 2018; 19(5):488-497. PubMed ID: 27829347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SPVec: A Word2vec-Inspired Feature Representation Method for Drug-Target Interaction Prediction.
    Zhang YF; Wang X; Kaushik AC; Chu Y; Shan X; Zhao MZ; Xu Q; Wei DQ
    Front Chem; 2019; 7():895. PubMed ID: 31998687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ensemble Learning Prediction of Drug-Target Interactions Using GIST Descriptor Extracted from PSSM-Based Evolutionary Information.
    Zhan X; You Z; Yu C; Li L; Pan J
    Biomed Res Int; 2020; 2020():4516250. PubMed ID: 32908888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of infectious disease-associated host genes using machine learning techniques.
    Barman RK; Mukhopadhyay A; Maulik U; Das S
    BMC Bioinformatics; 2019 Dec; 20(1):736. PubMed ID: 31881961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drug Repositioning for Schizophrenia and Depression/Anxiety Disorders: A Machine Learning Approach Leveraging Expression Data.
    Zhao K; So HC
    IEEE J Biomed Health Inform; 2019 May; 23(3):1304-1315. PubMed ID: 30010603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions.
    Jung YS; Kim Y; Cho YR
    Methods; 2022 Feb; 198():19-31. PubMed ID: 34737033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network.
    Wang YB; You ZH; Yang S; Yi HC; Chen ZH; Zheng K
    BMC Med Inform Decis Mak; 2020 Mar; 20(Suppl 2):49. PubMed ID: 32183788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 88.