These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
450 related articles for article (PubMed ID: 30939454)
1. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. Gu L; Zhang J; Li L; Du Z; Cai Q; Yang X Biomed Mater; 2019 Apr; 14(4):045001. PubMed ID: 30939454 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987 [TBL] [Abstract][Full Text] [Related]
3. Efficient regeneration of rat calvarial defect with gelatin-hydroxyapatite composite cryogel. Zhang Y; Leng H; Du Z; Huang Y; Liu X; Zhao Z; Zhang X; Cai Q; Yang X Biomed Mater; 2020 Sep; 15(6):065005. PubMed ID: 32422614 [TBL] [Abstract][Full Text] [Related]
4. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
5. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility. Kemençe N; Bölgen N J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022 [TBL] [Abstract][Full Text] [Related]
6. Injectable, High Specific Surface Area Cryogel Microscaffolds Integrated with Osteoinductive Bioceramic Fibers for Enhanced Bone Regeneration. Wang Y; Yuan Z; Pang Y; Zhang D; Li G; Zhang X; Yu Y; Yang X; Cai Q ACS Appl Mater Interfaces; 2023 May; 15(17):20661-20676. PubMed ID: 37083252 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration. Wang H; Hu B; Li H; Feng G; Pan S; Chen Z; Li B; Song J Int J Nanomedicine; 2022; 17():1511-1529. PubMed ID: 35388269 [TBL] [Abstract][Full Text] [Related]
8. Bone Morphogenetic Protein 7-Loaded Gelatin Methacrylate/Oxidized Sodium Alginate/Nano-Hydroxyapatite Composite Hydrogel for Bone Tissue Engineering. Huang S; Wang Z; Sun X; Li K Int J Nanomedicine; 2024; 19():6359-6376. PubMed ID: 38946885 [TBL] [Abstract][Full Text] [Related]
9. Inorganic/organic biocomposite cryogels for regeneration of bony tissues. Mishra R; Kumar A J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655 [TBL] [Abstract][Full Text] [Related]
10. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration. Hixon KR; Eberlin CT; Lu T; Neal SM; Case ND; McBride-Gagyi SH; Sell SA Biomed Mater; 2017 Mar; 12(2):025005. PubMed ID: 28145891 [TBL] [Abstract][Full Text] [Related]
11. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration. Kao HH; Kuo CY; Chen KS; Chen JP Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic Hydrogels Loaded with Nanofibers Mediate Sustained Release of pDNA and Promote In Situ Bone Regeneration. Huang L; Zhang Z; Guo M; Pan C; Huang Z; Jin J; Li Y; Hou X; Li W Macromol Biosci; 2021 Apr; 21(4):e2000393. PubMed ID: 33625790 [TBL] [Abstract][Full Text] [Related]
13. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Sun TW; Yu WL; Zhu YJ; Chen F; Zhang YG; Jiang YY; He YH Chemistry; 2018 Jun; 24(35):8809-8821. PubMed ID: 29655312 [TBL] [Abstract][Full Text] [Related]
14. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]
15. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
17. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Luo LJ; Lai JY; Chou SF; Hsueh YJ; Ma DH Acta Biomater; 2018 Jan; 65():123-136. PubMed ID: 29128534 [TBL] [Abstract][Full Text] [Related]
18. Injectable and reversible preformed cryogels based on chemically crosslinked gelatin methacrylate (GelMA) and physically crosslinked hyaluronic acid (HA) for soft tissue engineering. Jonidi Shariatzadeh F; Solouk A; Bagheri Khoulenjani S; Bonakdar S; Mirzadeh H Colloids Surf B Biointerfaces; 2021 Jul; 203():111725. PubMed ID: 33838583 [TBL] [Abstract][Full Text] [Related]
19. Nano-Silicate-Reinforced and SDF-1α-Loaded Gelatin-Methacryloyl Hydrogel for Bone Tissue Engineering. Shi Z; Xu Y; Mulatibieke R; Zhong Q; Pan X; Chen Y; Lian Q; Luo X; Shi Z; Zhu Q Int J Nanomedicine; 2020; 15():9337-9353. PubMed ID: 33262591 [TBL] [Abstract][Full Text] [Related]
20. Gelatin cryogels crosslinked with oxidized dextran and containing freshly formed hydroxyapatite as potential bone tissue-engineering scaffolds. Inci I; Kirsebom H; Galaev IY; Mattiasson B; Piskin E J Tissue Eng Regen Med; 2013 Jul; 7(7):584-8. PubMed ID: 22733656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]