These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 30940750)

  • 1. Daisy-chain gene drives for the alteration of local populations.
    Noble C; Min J; Olejarz J; Buchthal J; Chavez A; Smidler AL; DeBenedictis EA; Church GM; Nowak MA; Esvelt KM
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8275-8282. PubMed ID: 30940750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys.
    de Haas FJH; Kläy L; Débarre F; Otto SP
    PLoS Genet; 2024 May; 20(5):e1011262. PubMed ID: 38753875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression.
    Taxiarchi C; Beaghton A; Don NI; Kyrou K; Gribble M; Shittu D; Collins SP; Beisel CL; Galizi R; Crisanti A
    Nat Commun; 2021 Jun; 12(1):3977. PubMed ID: 34172748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daisy-chain gene drives: The role of low cut-rate, resistance mutations, and maternal deposition.
    Verkuijl SAN; Anderson MAE; Alphey L; Bonsall MB
    PLoS Genet; 2022 Sep; 18(9):e1010370. PubMed ID: 36121880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology.
    Marshall JM; Akbari OS
    ACS Chem Biol; 2018 Feb; 13(2):424-430. PubMed ID: 29370514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Based Gene Drives for Pest Control.
    McFarlane GR; Whitelaw CBA; Lillico SG
    Trends Biotechnol; 2018 Feb; 36(2):130-133. PubMed ID: 29221716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current CRISPR gene drive systems are likely to be highly invasive in wild populations.
    Noble C; Adlam B; Church GM; Esvelt KM; Nowak MA
    Elife; 2018 Jun; 7():. PubMed ID: 29916367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerning RNA-guided gene drives for the alteration of wild populations.
    Esvelt KM; Smidler AL; Catteruccia F; Church GM
    Elife; 2014 Jul; 3():. PubMed ID: 25035423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene drives gaining speed.
    Bier E
    Nat Rev Genet; 2022 Jan; 23(1):5-22. PubMed ID: 34363067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs.
    Champer SE; Oh SY; Liu C; Wen Z; Clark AG; Messer PW; Champer J
    Sci Adv; 2020 Mar; 6(10):eaaz0525. PubMed ID: 32181354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active genetics comes alive: Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives): Exploring the broad applications of CRISPR-based selfish genetic elements (or gene-drives).
    Gantz VM; Bier E
    Bioessays; 2022 Aug; 44(8):e2100279. PubMed ID: 35686327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of self-contained CRISPR gene drive reversal systems.
    Heffel MG; Finnigan GC
    Sci Rep; 2019 Dec; 9(1):20050. PubMed ID: 31882576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing resistance allele formation in CRISPR gene drive.
    Champer J; Liu J; Oh SY; Reeves R; Luthra A; Oakes N; Clark AG; Messer PW
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5522-5527. PubMed ID: 29735716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation gene drive for population modification of the malaria vector mosquito,
    Carballar-Lejarazú R; Ogaugwu C; Tushar T; Kelsey A; Pham TB; Murphy J; Schmidt H; Lee Y; Lanzaro GC; James AA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22805-22814. PubMed ID: 32839345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae.
    Simoni A; Hammond AM; Beaghton AK; Galizi R; Taxiarchi C; Kyrou K; Meacci D; Gribble M; Morselli G; Burt A; Nolan T; Crisanti A
    Nat Biotechnol; 2020 Sep; 38(9):1054-1060. PubMed ID: 32393821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation.
    Fuchs S; Garrood WT; Beber A; Hammond A; Galizi R; Gribble M; Morselli G; Hui TJ; Willis K; Kranjc N; Burt A; Crisanti A; Nolan T
    PLoS Genet; 2021 Oct; 17(10):e1009740. PubMed ID: 34610011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homing gene drives can transfer rapidly between Anopheles gambiae strains with minimal carryover of flanking sequences.
    Pescod P; Bevivino G; Anthousi A; Shepherd J; Shelton R; Lombardo F; Nolan T
    Nat Commun; 2024 Aug; 15(1):6846. PubMed ID: 39122734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A toxin-antidote CRISPR gene drive system for regional population modification.
    Champer J; Lee E; Yang E; Liu C; Clark AG; Messer PW
    Nat Commun; 2020 Feb; 11(1):1082. PubMed ID: 32109227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Controllable Gene Drive in
    Chae D; Lee J; Lee N; Park K; Moon SJ; Kim HH
    ACS Synth Biol; 2020 Sep; 9(9):2362-2377. PubMed ID: 32786353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.