These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30940858)

  • 1. Concurrent climate extremes in the key wheat producing regions of the world.
    Toreti A; Cronie O; Zampieri M
    Sci Rep; 2019 Apr; 9(1):5493. PubMed ID: 30940858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe.
    Semenov MA; Shewry PR
    Sci Rep; 2011; 1():66. PubMed ID: 22355585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach.
    Shayanmehr S; Rastegari Henneberry S; Sabouhi Sabouni M; Shahnoushi Foroushani N
    Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32708323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The shifting influence of drought and heat stress for crops in northeast Australia.
    Lobell DB; Hammer GL; Chenu K; Zheng B; McLean G; Chapman SC
    Glob Chang Biol; 2015 Nov; 21(11):4115-27. PubMed ID: 26152643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating US agriculture in a modern Dust Bowl drought.
    Glotter M; Elliott J
    Nat Plants; 2016 Dec; 3():16193. PubMed ID: 27941818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing and intensity of heat and drought stress determine wheat yield losses in Germany.
    Riedesel L; Möller M; Horney P; Golla B; Piepho HP; Kautz T; Feike T
    PLoS One; 2023; 18(7):e0288202. PubMed ID: 37490483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of climate change on wheat in England and Wales.
    Semenov MA
    J R Soc Interface; 2009 Apr; 6(33):343-50. PubMed ID: 18682360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreases in global beer supply due to extreme drought and heat.
    Xie W; Xiong W; Pan J; Ali T; Cui Q; Guan D; Meng J; Mueller ND; Lin E; Davis SJ
    Nat Plants; 2018 Nov; 4(11):964-973. PubMed ID: 30323183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.
    Duncan JM; Dash J; Atkinson PM
    Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced economic connectivity to foster heat stress-related losses.
    Wenz L; Levermann A
    Sci Adv; 2016 Jun; 2(6):e1501026. PubMed ID: 27386555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Managing the risk of extreme climate events in Australian major wheat production systems.
    Luo Q; Trethowan R; Tan DKY
    Int J Biometeorol; 2018 Sep; 62(9):1685-1694. PubMed ID: 29869183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields.
    Feng S; Hao Z; Zhang X; Hao F
    Sci Total Environ; 2019 Nov; 689():1228-1234. PubMed ID: 31466161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat.
    Zhang T; Lin X; Sassenrath GF
    Sci Total Environ; 2015 Mar; 508():331-42. PubMed ID: 25497355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.
    Dias de Oliveira EA; Siddique KH; Bramley H; Stefanova K; Palta JA
    Glob Chang Biol; 2015 Feb; 21(2):857-73. PubMed ID: 25330325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substantial increase in concurrent droughts and heatwaves in the United States.
    Mazdiyasni O; AghaKouchak A
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11484-9. PubMed ID: 26324927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO
    Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR
    Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of drought stress, high temperature and elevated CO2 concentration on the growth of winter wheat].
    Si FY; Qiao YZ; Jiang JW; Dong BD; Shi CH; Liu MY
    Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2605-12. PubMed ID: 25757312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.
    Frank D; Reichstein M; Bahn M; Thonicke K; Frank D; Mahecha MD; Smith P; van der Velde M; Vicca S; Babst F; Beer C; Buchmann N; Canadell JG; Ciais P; Cramer W; Ibrom A; Miglietta F; Poulter B; Rammig A; Seneviratne SI; Walz A; Wattenbach M; Zavala MA; Zscheischler J
    Glob Chang Biol; 2015 Aug; 21(8):2861-80. PubMed ID: 25752680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverging importance of drought stress for maize and winter wheat in Europe.
    Webber H; Ewert F; Olesen JE; Müller C; Fronzek S; Ruane AC; Bourgault M; Martre P; Ababaei B; Bindi M; Ferrise R; Finger R; Fodor N; Gabaldón-Leal C; Gaiser T; Jabloun M; Kersebaum KC; Lizaso JI; Lorite IJ; Manceau L; Moriondo M; Nendel C; Rodríguez A; Ruiz-Ramos M; Semenov MA; Siebert S; Stella T; Stratonovitch P; Trombi G; Wallach D
    Nat Commun; 2018 Oct; 9(1):4249. PubMed ID: 30315168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.