These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 30941152)

  • 21. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does plant-Microbe interaction confer stress tolerance in plants: A review?
    Kumar A; Verma JP
    Microbiol Res; 2018 Mar; 207():41-52. PubMed ID: 29458867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative profiling of volatile organic compounds associated to temperature sensitive resistance to wheat streak mosaic virus (WSMV) in resistant and susceptible wheat cultivars at normal and elevated temperatures.
    Farahbakhsh F; Massah A; Hamzehzarghani H; Yassaie M; Amjadi Z; El-Zaeddi H; Carbonell-Barrachina AA
    J Plant Physiol; 2023 Feb; 281():153903. PubMed ID: 36608365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial volatile organic compounds (VOCs) promote growth and induce metabolic changes in rice.
    Almeida OAC; de Araujo NO; Mulato ATN; Persinoti GF; Sforça ML; Calderan-Rodrigues MJ; Oliveira JVC
    Front Plant Sci; 2022; 13():1056082. PubMed ID: 36844905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Dual Role of Antimicrobial Proteins and Peptides: Exploring Their Direct Impact and Plant Defense-Enhancing Abilities.
    Farvardin A; González-Hernández AI; Llorens E; Camañes G; Scalschi L; Vicedo B
    Plants (Basel); 2024 Jul; 13(15):. PubMed ID: 39124177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model.
    Jin J; Zhao M; Jing T; Zhang M; Lu M; Yu G; Wang J; Guo D; Pan Y; Hoffmann TD; Schwab W; Song C
    Hortic Res; 2023 Sep; 10(9):uhad143. PubMed ID: 37691961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of bacterial volatile emissions on plant abiotic stress tolerance.
    Liu XM; Zhang H
    Front Plant Sci; 2015; 6():774. PubMed ID: 26442083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?
    Holopainen JK
    Tree Physiol; 2011 Dec; 31(12):1356-77. PubMed ID: 22112623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants.
    Sako K; Nguyen HM; Seki M
    Plant Cell Physiol; 2021 Feb; 61(12):1995-2003. PubMed ID: 32966567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discussion paper: Sustainable increase of crop production through improved technical strategies, breeding and adapted management - A European perspective.
    Schröder P; Sauvêtre A; Gnädinger F; Pesaresi P; Chmeliková L; Doğan N; Gerl G; Gökçe A; Hamel C; Millan R; Persson T; Ravnskov S; Rutkowska B; Schmid T; Szulc W; Teodosiu C; Terzi V
    Sci Total Environ; 2019 Aug; 678():146-161. PubMed ID: 31075581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trichoderma for climate resilient agriculture.
    Kashyap PL; Rai P; Srivastava AK; Kumar S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Hashem A; Tabassum B; Fathi Abd Allah E
    Saudi J Biol Sci; 2019 Sep; 26(6):1291-1297. PubMed ID: 31516360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Association With Two Different Arbuscular Mycorrhizal Fungi Differently Affects Water Stress Tolerance in Tomato.
    Volpe V; Chitarra W; Cascone P; Volpe MG; Bartolini P; Moneti G; Pieraccini G; Di Serio C; Maserti B; Guerrieri E; Balestrini R
    Front Plant Sci; 2018; 9():1480. PubMed ID: 30356724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens.
    Almeida OAC; de Araujo NO; Dias BHS; de Sant'Anna Freitas C; Coerini LF; Ryu CM; de Castro Oliveira JV
    Front Microbiol; 2022; 13():951130. PubMed ID: 36687575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heritable priming by
    Tiwari M; Singh R; Jha R; Singh P
    Front Plant Sci; 2022; 13():1050765. PubMed ID: 36600913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unveiling Methods to Stimulate Plant Resistance against Pathogens.
    Saberi Riseh R; Gholizadeh Vazvani M
    Front Biosci (Landmark Ed); 2024 May; 29(5):188. PubMed ID: 38812323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa.
    Ayantunde AA; Duncan AJ; van Wijk MT; Thorne P
    Animal; 2018 Dec; 12(s2):s199-s209. PubMed ID: 30139396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abiotic and Biotic Damage of Microalgae Generate Different Volatile Organic Compounds (VOCs) for Early Diagnosis of Algal Cultures for Biofuel Production.
    Reese KL; Fisher CL; Lane PD; Jaryenneh JD; Jones AD; Frank M; Lane TW
    Metabolites; 2021 Oct; 11(10):. PubMed ID: 34677422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change.
    Kumar P; Singh S; Pranaw K; Kumar S; Singh B; Poria V
    Heliyon; 2022 Nov; 8(11):e11269. PubMed ID: 36339753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.