These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 30941464)
1. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Priya M; Dhanker OP; Siddique KHM; HanumanthaRao B; Nair RM; Pandey S; Singh S; Varshney RK; Prasad PVV; Nayyar H Theor Appl Genet; 2019 Jun; 132(6):1607-1638. PubMed ID: 30941464 [TBL] [Abstract][Full Text] [Related]
2. Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Xiang J; Chen X; Hu W; Xiang Y; Yan M; Wang J Plant Cell Rep; 2018 Nov; 37(11):1585-1595. PubMed ID: 30099612 [TBL] [Abstract][Full Text] [Related]
3. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Manna M; Thakur T; Chirom O; Mandlik R; Deshmukh R; Salvi P Physiol Plant; 2021 Jun; 172(2):847-868. PubMed ID: 33180329 [TBL] [Abstract][Full Text] [Related]
4. Complex plant responses to drought and heat stress under climate change. Sato H; Mizoi J; Shinozaki K; Yamaguchi-Shinozaki K Plant J; 2024 Mar; 117(6):1873-1892. PubMed ID: 38168757 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut. Ramu VS; Swetha TN; Sheela SH; Babitha CK; Rohini S; Reddy MK; Tuteja N; Reddy CP; Prasad TG; Udayakumar M Plant Biotechnol J; 2016 Mar; 14(3):1008-20. PubMed ID: 26383697 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of Samtani H; Sharma A; Khurana P Cells; 2022 Mar; 11(5):. PubMed ID: 35269534 [TBL] [Abstract][Full Text] [Related]
7. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Yan H; Jia H; Chen X; Hao L; An H; Guo X Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Yu J; Lai Y; Wu X; Wu G; Guo C Biochem Biophys Res Commun; 2016 Sep; 478(2):703-9. PubMed ID: 27524243 [TBL] [Abstract][Full Text] [Related]
9. Transcription factors as molecular switches to regulate drought adaptation in maize. Leng P; Zhao J Theor Appl Genet; 2020 May; 133(5):1455-1465. PubMed ID: 31807836 [TBL] [Abstract][Full Text] [Related]
10. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Razi K; Muneer S Crit Rev Biotechnol; 2021 Aug; 41(5):669-691. PubMed ID: 33525946 [TBL] [Abstract][Full Text] [Related]
11. Heat shock protein TaHSP17.4, a TaHOP interactor in wheat, improves plant stress tolerance. Wang YX; Yu TF; Wang CX; Wei JT; Zhang SX; Liu YW; Chen J; Zhou YB; Chen M; Ma YZ; Lan JH; Zheng JC; Li F; Xu ZS Int J Biol Macromol; 2023 Aug; 246():125694. PubMed ID: 37414309 [TBL] [Abstract][Full Text] [Related]
12. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. Reddy PS; Kavi Kishor PB; Seiler C; Kuhlmann M; Eschen-Lippold L; Lee J; Reddy MK; Sreenivasulu N PLoS One; 2014; 9(3):e89125. PubMed ID: 24594978 [TBL] [Abstract][Full Text] [Related]
13. Universal stress protein in Malus sieversii confers enhanced drought tolerance. Yang M; Che S; Zhang Y; Wang H; Wei T; Yan G; Song W; Yu W J Plant Res; 2019 Nov; 132(6):825-837. PubMed ID: 31482250 [TBL] [Abstract][Full Text] [Related]
14. Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress. Paul S; Gayen D; Datta SK; Datta K Plant Sci; 2015 May; 234():133-43. PubMed ID: 25804816 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. Johnson SM; Lim FL; Finkler A; Fromm H; Slabas AR; Knight MR BMC Genomics; 2014 Jun; 15(1):456. PubMed ID: 24916767 [TBL] [Abstract][Full Text] [Related]
16. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. Zou J; Liu C; Liu A; Zou D; Chen X J Plant Physiol; 2012 Apr; 169(6):628-35. PubMed ID: 22321692 [TBL] [Abstract][Full Text] [Related]
18. A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Feng XH; Zhang HX; Ali M; Gai WX; Cheng GX; Yu QH; Yang SB; Li XX; Gong ZH Plant Physiol Biochem; 2019 Sep; 142():151-162. PubMed ID: 31284139 [TBL] [Abstract][Full Text] [Related]
19. Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice. Chang Y; Fang Y; Liu J; Ye T; Li X; Tu H; Ye Y; Wang Y; Xiong L Nat Commun; 2024 Jul; 15(1):5877. PubMed ID: 38997294 [TBL] [Abstract][Full Text] [Related]
20. Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. Li J; Zhao S; Yu X; Du W; Li H; Sun Y; Sun H; Ruan C Plant Physiol Biochem; 2021 May; 162():410-420. PubMed ID: 33740680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]