These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
760 related articles for article (PubMed ID: 30941642)
1. CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Kumar R; Kaur A; Pandey A; Mamrutha HM; Singh GP Mol Biol Rep; 2019 Jun; 46(3):3557-3569. PubMed ID: 30941642 [TBL] [Abstract][Full Text] [Related]
2. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Bhowmik P; Ellison E; Polley B; Bollina V; Kulkarni M; Ghanbarnia K; Song H; Gao C; Voytas DF; Kagale S Sci Rep; 2018 Apr; 8(1):6502. PubMed ID: 29695804 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review. Elsharawy H; Refat M Funct Integr Genomics; 2023 Aug; 23(3):265. PubMed ID: 37541970 [TBL] [Abstract][Full Text] [Related]
4. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system. Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735 [TBL] [Abstract][Full Text] [Related]
5. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice. Xu R; Wei P; Yang J Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9: an advanced tool for editing plant genomes. Samanta MK; Dey A; Gayen S Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546 [TBL] [Abstract][Full Text] [Related]
7. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies. Amritha PP; Shah JM Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237 [TBL] [Abstract][Full Text] [Related]
8. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Zhang Y; Liang Z; Zong Y; Wang Y; Liu J; Chen K; Qiu JL; Gao C Nat Commun; 2016 Aug; 7():12617. PubMed ID: 27558837 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9 genome editing in wheat. Kim D; Alptekin B; Budak H Funct Integr Genomics; 2018 Jan; 18(1):31-41. PubMed ID: 28918562 [TBL] [Abstract][Full Text] [Related]
11. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases. Kim D; Hager M; Brant E; Budak H Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467 [TBL] [Abstract][Full Text] [Related]
12. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment. Liu G; Li J; Godwin ID Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290 [TBL] [Abstract][Full Text] [Related]
13. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. Zhou X; Zhao Y; Ni P; Ni Z; Sun Q; Zong Y J Genet Genomics; 2023 Nov; 50(11):815-834. PubMed ID: 37741566 [TBL] [Abstract][Full Text] [Related]
15. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Dheer P; Rautela I; Sharma V; Dhiman M; Sharma A; Sharma N; Sharma MD Gene; 2020 Aug; 753():144795. PubMed ID: 32450202 [TBL] [Abstract][Full Text] [Related]
16. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304 [TBL] [Abstract][Full Text] [Related]