BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30941759)

  • 1. Evidence for weak interaction between phytochromes Agp1 and Agp2 from Agrobacterium fabrum.
    Xue P; El Kurdi A; Kohler A; Ma H; Kaeser G; Ali A; Fischer R; Krauß N; Lamparter T
    FEBS Lett; 2019 May; 593(9):926-941. PubMed ID: 30941759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochromes from Agrobacterium fabrum.
    Lamparter T; Krauß N; Scheerer P
    Photochem Photobiol; 2017 May; 93(3):642-655. PubMed ID: 28500698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochrome Mediated Responses in Agrobacterium fabrum: Growth, Motility and Plant Infection.
    Xue P; Bai Y; Rottwinkel G; Averbukh E; Ma Y; Roeder T; Scheerer P; Krauß N; Lamparter T
    Curr Microbiol; 2021 Jul; 78(7):2708-2719. PubMed ID: 34023916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophytochromes control conjugation in Agrobacterium fabrum.
    Bai Y; Rottwinkel G; Feng J; Liu Y; Lamparter T
    J Photochem Photobiol B; 2016 Aug; 161():192-9. PubMed ID: 27261700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores.
    Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T
    Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved fluorescence anisotropy with Atto 488-labeled phytochrome Agp1 from Agrobacterium fabrum.
    Elkurdi A; Guigas G; Hourani-Alsharafat L; Scheerer P; Nienhaus GU; Krauß N; Lamparter T
    Photochem Photobiol; 2024; 100(3):561-572. PubMed ID: 37675785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers.
    Nagano S; Scheerer P; Zubow K; Michael N; Inomata K; Lamparter T; Krauß N
    J Biol Chem; 2016 Sep; 291(39):20674-91. PubMed ID: 27466363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature effects on Agrobacterium phytochrome Agp1.
    Njimona I; Lamparter T
    PLoS One; 2011; 6(10):e25977. PubMed ID: 22043299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochromes from Agrobacterium tumefaciens: difference spectroscopy with extracts of wild type and knockout mutants.
    Oberpichler I; Molina I; Neubauer O; Lamparter T
    FEBS Lett; 2006 Jan; 580(2):437-42. PubMed ID: 16378606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral properties of phytochrome Agp2 from Agrobacterium tumefaciens are specifically modified by a compound of the cell extract.
    Krieger A; Molina I; Oberpichler I; Michael N; Lamparter T
    J Photochem Photobiol B; 2008 Oct; 93(1):16-22. PubMed ID: 18693034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site.
    Lamparter T; Michael N; Mittmann F; Esteban B
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11628-33. PubMed ID: 12186972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the Propionic Side Chains for the Photoconversion of Bacterial Phytochromes.
    Fernandez Lopez M; Nguyen AD; Velazquez Escobar F; González R; Michael N; Nogacz Ż; Piwowarski P; Bartl F; Siebert F; Heise I; Scheerer P; Gärtner W; Mroginski MA; Hildebrandt P
    Biochemistry; 2019 Aug; 58(33):3504-3519. PubMed ID: 31348653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochromes in
    Lamparter T; Xue P; Elkurdi A; Kaeser G; Sauthof L; Scheerer P; Krauß N
    Front Plant Sci; 2021; 12():642801. PubMed ID: 33995441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intersubunit distances in full-length, dimeric, bacterial phytochrome Agp1, as measured by pulsed electron-electron double resonance (PELDOR) between different spin label positions, remain unchanged upon photoconversion.
    Kacprzak S; Njimona I; Renz A; Feng J; Reijerse E; Lubitz W; Krauss N; Scheerer P; Nagano S; Lamparter T; Weber S
    J Biol Chem; 2017 May; 292(18):7598-7606. PubMed ID: 28289094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced conformational changes of the chromophore and the protein in phytochromes: bacterial phytochromes as model systems.
    Scheerer P; Michael N; Park JH; Nagano S; Choe HW; Inomata K; Borucki B; Krauss N; Lamparter T
    Chemphyschem; 2010 Apr; 11(6):1090-105. PubMed ID: 20373318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr.
    Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T
    J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein conformational changes of Agrobacterium phytochrome Agp1 during chromophore assembly and photoconversion.
    Noack S; Michael N; Rosen R; Lamparter T
    Biochemistry; 2007 Apr; 46(13):4164-76. PubMed ID: 17335289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2.
    Inomata K; Noack S; Hammam MA; Khawn H; Kinoshita H; Murata Y; Michael N; Scheerer P; Krauss N; Lamparter T
    J Biol Chem; 2006 Sep; 281(38):28162-73. PubMed ID: 16803878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1.
    Lamparter T; Carrascal M; Michael N; Martinez E; Rottwinkel G; Abian J
    Biochemistry; 2004 Mar; 43(12):3659-69. PubMed ID: 15035636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.