BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 30941813)

  • 1. Unconventional Nanofabrication for Supramolecular Electronics.
    Yao Y; Zhang L; Orgiu E; Samorì P
    Adv Mater; 2019 Jun; 31(23):e1900599. PubMed ID: 30941813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices.
    Hirst AR; Escuder B; Miravet JF; Smith DK
    Angew Chem Int Ed Engl; 2008; 47(42):8002-18. PubMed ID: 18825737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially Confined Face-Selective Growth of Large-Area 2D Organic Molecular Crystals in a Supramolecular Gel for Highly Efficient Flexible Photodetection.
    Shen C; Han P; Zheng Z; Jiang W; Gao S; Hua C; Chen CL; Xia F; Zhai T; Liu K; Fang Y
    Adv Sci (Weinh); 2022 Oct; 9(30):e2203662. PubMed ID: 36054543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Suspended Nanomesh Scaffold for Ultrafast Flexible Photodetectors Based on Organic Semiconducting Crystals.
    Zhang L; Pasthukova N; Yao Y; Zhong X; Pavlica E; Bratina G; Orgiu E; Samorì P
    Adv Mater; 2018 Jul; 30(28):e1801181. PubMed ID: 29782659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architectonics: Design of Molecular Architecture for Functional Applications.
    Avinash MB; Govindaraju T
    Acc Chem Res; 2018 Feb; 51(2):414-426. PubMed ID: 29364649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics.
    Sengupta S; Würthner F
    Acc Chem Res; 2013 Nov; 46(11):2498-512. PubMed ID: 23865851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Response Organic Supramolecular Transistors Utilizing In-Situ π-Ion Gels.
    Kushida S; Smarsly E; Yoshinaga K; Wacker I; Yamamoto Y; Schröder RR; Bunz UHF
    Adv Mater; 2021 Jan; 33(4):e2006061. PubMed ID: 33306238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices.
    Yao Y; Zhang L; Leydecker T; Samorì P
    J Am Chem Soc; 2018 Jun; 140(22):6984-6990. PubMed ID: 29746772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular structures fabricated through the epitaxial growth of semiconducting poly(3-hexylthiophene) on carbon nanotubes as building blocks of nanoscale electronics.
    Misra RD; Depan D; Challa VS; Shah JS
    Phys Chem Chem Phys; 2014 Sep; 16(36):19122-9. PubMed ID: 25101805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics.
    Xie LH; Yang SH; Lin JY; Yi MD; Huang W
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120337. PubMed ID: 24000368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials.
    Elacqua E; Lye DS; Weck M
    Acc Chem Res; 2014 Aug; 47(8):2405-16. PubMed ID: 24905869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics.
    Palermo V; Schwartz E; Finlayson CE; Liscio A; Otten MB; Trapani S; Müllen K; Beljonne D; Friend RH; Nolte RJ; Rowan AE; Samorì P
    Adv Mater; 2010 Feb; 22(8):E81-8. PubMed ID: 20217805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular electronics; nanowires from self-assembled pi-conjugated systems.
    Schenning AP; Meijer EW
    Chem Commun (Camb); 2005 Jul; (26):3245-58. PubMed ID: 15983639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated Polymers in Bioelectronics.
    Inal S; Rivnay J; Suiu AO; Malliaras GG; McCulloch I
    Acc Chem Res; 2018 Jun; 51(6):1368-1376. PubMed ID: 29874033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro- and nanocrystals of organic semiconductors.
    Li R; Hu W; Liu Y; Zhu D
    Acc Chem Res; 2010 Apr; 43(4):529-40. PubMed ID: 20067223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Electronics: From Nanostructure Assembly to Device Integration.
    Yuan M; Qiu Y; Gao H; Feng J; Jiang L; Wu Y
    J Am Chem Soc; 2024 Mar; 146(12):7885-7904. PubMed ID: 38483827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.