These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30942257)

  • 1. Accumulation of oocysts of Cryptosporidium parvum in Biomphalaria glabrata (Pulmonata:Planorbidae) under experimental conditions.
    Schiffler CL; Pinheiro J; Bomfim TCBD
    Rev Soc Bras Med Trop; 2019 Mar; 52():e20180273. PubMed ID: 30942257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotyping of Cryptosporidium parvum with microsatellite markers.
    Widmer G; Feng X; Tanriverdi S
    Methods Mol Biol; 2004; 268():177-87. PubMed ID: 15156029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of freeze-thaw cycles for nucleic acid extraction and molecular detection of Cryptosporidium parvum and Toxoplasma gondii oocysts in environmental matrices.
    Manore AJW; Harper SL; Aguilar B; Weese JS; Shapiro K
    J Microbiol Methods; 2019 Jan; 156():1-4. PubMed ID: 30468750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples.
    Leetz AS; Sotiriadou I; Ongerth J; Karanis P
    Parasitol Res; 2007 Sep; 101(4):951-62. PubMed ID: 17514380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel piscine Cryptosporidium genotype and Cryptosporidium parvum in cultured rainbow trout (Oncorhynchus mykiss).
    Couso-Pérez S; Ares-Mazás E; Gómez-Couso H
    Parasitol Res; 2018 Sep; 117(9):2987-2996. PubMed ID: 29987411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection system of Cryptosporidium parvum oocysts by brackish water benthic shellfish (Corbicula japonica) as a biological indicator in river water.
    Izumi T; Yagita K; Endo T; Ohyama T
    Arch Environ Contam Toxicol; 2006 Nov; 51(4):559-66. PubMed ID: 16998637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a TaqMan quantitative PCR assay specific for Cryptosporidium parvum.
    Fontaine M; Guillot E
    FEMS Microbiol Lett; 2002 Aug; 214(1):13-7. PubMed ID: 12204366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and discrimination of Cryptosporidium parvum and C. hominis in water samples by immunomagnetic separation-PCR.
    Ochiai Y; Takada C; Hosaka M
    Appl Environ Microbiol; 2005 Feb; 71(2):898-903. PubMed ID: 15691946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Cryptosporidium parvum Oocysts on Fresh Produce Using DNA Aptamers.
    Iqbal A; Labib M; Muharemagic D; Sattar S; Dixon BR; Berezovski MV
    PLoS One; 2015; 10(9):e0137455. PubMed ID: 26334529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and differentiation of Cryptosporidium oocysts in water by PCR-RFLP.
    Xiao L; Lal AA; Jiang J
    Methods Mol Biol; 2004; 268():163-76. PubMed ID: 15156028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Cryptosporidium parvum in secondary effluents using a most probable number-polymerase chain reaction assay.
    Tsuchihashi R; Loge FJ; Darby JL
    Water Environ Res; 2003; 75(4):292-9. PubMed ID: 12934822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific, nested PCR-restriction fragment length polymorphism detection of single Cryptosporidium parvum oocysts.
    Sturbaum GD; Reed C; Hoover PJ; Jost BH; Marshall MM; Sterling CR
    Appl Environ Microbiol; 2001 Jun; 67(6):2665-8. PubMed ID: 11375178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive method for detecting Cryptosporidium parvum oocysts recovered from source and finished water using RT-PCR directed to Cryspovirus RNA.
    de Souza MS; O'Brien C; Santin M; Jenkins M
    J Microbiol Methods; 2019 Jan; 156():77-80. PubMed ID: 30508558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single-tube nested real-time polymerase chain reaction for sensitive contained detection of Cryptosporidium parvum.
    Minarovicová J; Kaclíková E; Krascsenicsová K; Siekel P; Kuchta T
    Lett Appl Microbiol; 2009 Nov; 49(5):568-72. PubMed ID: 19709364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contamination of river water by Cryptosporidium parvum oocysts in western Japan.
    Ono K; Tsuji H; Rai SK; Yamamoto A; Masuda K; Endo T; Hotta H; Kawamura T; Uga S
    Appl Environ Microbiol; 2001 Sep; 67(9):3832-6. PubMed ID: 11525974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts.
    Hønsvall BK; Robertson LJ
    Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and potential use of a Cryptosporidium parvum virus (CPV) antigen for detecting C. parvum oocysts.
    Kniel KE; Higgins JA; Trout JM; Fayer R; Jenkins MC
    J Microbiol Methods; 2004 Aug; 58(2):189-95. PubMed ID: 15234516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal effect of the water purifier for home use against Cryptosporidium parvum oocysts.
    Matsui T; Kajima J; Fujino T
    J Vet Med Sci; 2004 Aug; 66(8):941-3. PubMed ID: 15353844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples.
    Yang R; Murphy C; Song Y; Ng-Hublin J; Estcourt A; Hijjawi N; Chalmers R; Hadfield S; Bath A; Gordon C; Ryan U
    Exp Parasitol; 2013 Sep; 135(1):142-7. PubMed ID: 23838581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.