These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30942730)

  • 1. Predicting Blood Donations in a Tertiary Care Center Using Time Series Forecasting.
    Bischoff F; Koch MDC; Rodrigues PP
    Stud Health Technol Inform; 2019; 258():135-139. PubMed ID: 30942730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Namibia's transition from whole blood-derived pooled platelets to single-donor apheresis platelet collections.
    Pitman JP; Basavaraju SV; Shiraishi RW; Wilkinson R; von Finckenstein B; Lowrance DW; Marfin AA; Postma M; Mataranyika M; Smit Sibinga CT
    Transfusion; 2015 Jul; 55(7):1685-92. PubMed ID: 25727921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood donation projections using hierarchical time series forecasting: the case of Zimbabwe's national blood bank.
    Chideme C; Chikobvu D; Makoni T
    BMC Public Health; 2024 Apr; 24(1):928. PubMed ID: 38556866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Age Group in Hierarchical Forecasting of Monthly Blood Donations in Zimbabwe.
    Chideme C; Chikobvu D; Makoni T
    Risk Manag Healthc Policy; 2024; 17():311-328. PubMed ID: 38356677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Time-Series Analysis and Expert Judgment in Modeling and Forecasting Blood Donation Trends in Zimbabwe.
    Chideme C; Chikobvu D
    MDM Policy Pract; 2024; 9(1):23814683231222483. PubMed ID: 38250667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Time Series Methods and Machine Learning Algorithms for Forecasting Taiwan Blood Services Foundation's Blood Supply.
    Shih H; Rajendran S
    J Healthc Eng; 2019; 2019():6123745. PubMed ID: 31636879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complications of blood donation reported to haemovigilance systems: analysis of eleven years of international surveillance.
    Wiersum-Osselton JC; Politis C; Richardson C; Goto N; Grouzi E; Marano G; Land KJ
    Vox Sang; 2021 Jul; 116(6):628-636. PubMed ID: 33278040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal collecting policy for apheresis platelets in a regional blood center.
    Lin SW; Hung YS; Lee WC; Liu CH
    Vox Sang; 2020 Feb; 115(2):148-158. PubMed ID: 31729051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Demography and donation frequencies of blood and plasma donor populations in Germany. Update 2010 and 5-year comparison].
    Ritter S; Hamouda O; Offergeld R
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2012 Aug; 55(8):914-22. PubMed ID: 22842884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].
    Ke-Wei W; Yu W; Jin-Ping L; Yu-Yu J
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(6):630-634. PubMed ID: 29469251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matching blood donations to type-specific product needs: a recruitment technique.
    Kuriyan M; Wells S
    J Clin Apher; 1995; 10(1):23-6. PubMed ID: 7601863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada.
    Petukhova T; Ojkic D; McEwen B; Deardon R; Poljak Z
    PLoS One; 2018; 13(6):e0198313. PubMed ID: 29856881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time series model for forecasting the number of new admission inpatients.
    Zhou L; Zhao P; Wu D; Cheng C; Huang H
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):39. PubMed ID: 29907102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved neural network for predicting blood donations based on two emergent factors.
    Li X; Ding X; Guo H; Zhang X
    Transfus Clin Biol; 2023 May; 30(2):249-255. PubMed ID: 36708915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans.
    Zhou L; Xia J; Yu L; Wang Y; Shi Y; Cai S; Nie S
    Int J Environ Res Public Health; 2016 Mar; 13(4):355. PubMed ID: 27023573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of double- and triple-apheresis platelet product donation on apheresis donor platelet and white blood cell counts.
    Richa E; Krueger P; Burgstaler EA; Bryant SC; Winters JL
    Transfusion; 2008 Jul; 48(7):1325-32. PubMed ID: 18346017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China.
    Liao Z; Zhang X; Zhang Y; Peng D
    Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China.
    Wu W; Guo J; An S; Guan P; Ren Y; Xia L; Zhou B
    PLoS One; 2015; 10(8):e0135492. PubMed ID: 26270814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelet concentrates, from whole blood or collected by apheresis?
    van der Meer PF
    Transfus Apher Sci; 2013 Apr; 48(2):129-31. PubMed ID: 23535511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks.
    Wu W; An SY; Guan P; Huang DS; Zhou BS
    BMC Infect Dis; 2019 May; 19(1):414. PubMed ID: 31088391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.