These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions. Xu Y; Xu B Small; 2015 Dec; 11(46):6165-71. PubMed ID: 26485695 [TBL] [Abstract][Full Text] [Related]
8. Local nano-electrode fabrication utilizing nanofluidic and nano-electrochemical control. Morikawa K; Takeuchi T; Kitamori T Electrophoresis; 2024 Jul; ():. PubMed ID: 38962855 [TBL] [Abstract][Full Text] [Related]
9. Stable Formation of Aqueous/Organic Parallel Two-phase Flow in Nanochannels with Partial Surface Modification. Sano H; Kazoe Y; Kitamori T Anal Sci; 2021 Nov; 37(11):1611-1616. PubMed ID: 34054008 [TBL] [Abstract][Full Text] [Related]
10. A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices. Shoda K; Tanaka M; Mino K; Kazoe Y Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32854246 [TBL] [Abstract][Full Text] [Related]
11. Liquid glass electrodes for nanofluidics. Lee S; An R; Hunt AJ Nat Nanotechnol; 2010 Jun; 5(6):412-6. PubMed ID: 20473300 [TBL] [Abstract][Full Text] [Related]
12. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process. Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493 [TBL] [Abstract][Full Text] [Related]
14. A simple approach for an optically transparent nanochannel device prototype. Liang F; Ju A; Qiao Y; Guo J; Feng H; Li J; Lu N; Tu J; Lu Z Lab Chip; 2016 Mar; 16(6):984-91. PubMed ID: 26891717 [TBL] [Abstract][Full Text] [Related]
15. High resolution separation by pressure-driven liquid chromatography in meander extended nanochannels. Ishibashi R; Mawatari K; Kitamori T J Chromatogr A; 2012 May; 1238():152-5. PubMed ID: 22503926 [TBL] [Abstract][Full Text] [Related]
16. Pressure-driven flow control system for nanofluidic chemical process. Tamaki E; Hibara A; Kim HB; Tokeshi M; Kitamori T J Chromatogr A; 2006 Dec; 1137(2):256-62. PubMed ID: 17129585 [TBL] [Abstract][Full Text] [Related]
17. Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection. Tsuyama Y; Morikawa K; Mawatari K Nanoscale; 2021 May; 13(19):8855-8863. PubMed ID: 33949427 [TBL] [Abstract][Full Text] [Related]
18. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation. Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586 [TBL] [Abstract][Full Text] [Related]
19. Cytokine analysis on a countable number of molecules from living single cells on nanofluidic devices. Nakao T; Kazoe Y; Mori E; Morikawa K; Fukasawa T; Yoshizaki A; Kitamori T Analyst; 2019 Dec; 144(24):7200-7208. PubMed ID: 31691693 [TBL] [Abstract][Full Text] [Related]
20. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]