These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Relaxed selection on male mitochondrial genes in DUI bivalves eases the need for mitonuclear coevolution. Maeda GP; Iannello M; McConie HJ; Ghiselli F; Havird JC J Evol Biol; 2021 Nov; 34(11):1722-1736. PubMed ID: 34533872 [TBL] [Abstract][Full Text] [Related]
3. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves. Piccinini G; Iannello M; Puccio G; Plazzi F; Havird JC; Ghiselli F Mol Biol Evol; 2021 May; 38(6):2597-2614. PubMed ID: 33616640 [TBL] [Abstract][Full Text] [Related]
5. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila. Gallach M; Chandrasekaran C; Betrán E Genome Biol Evol; 2010; 2():835-50. PubMed ID: 21037198 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the oxidative phosphorylation (OXPHOS) nuclear genes in the genomes of Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae. Tripoli G; D'Elia D; Barsanti P; Caggese C Genome Biol; 2005; 6(2):R11. PubMed ID: 15693940 [TBL] [Abstract][Full Text] [Related]
7. Mitonuclear compatibility is maintained despite relaxed selection on male mitochondrial DNA in bivalves with doubly uniparental inheritance. Smith CH; Mejia-Trujillo R; Havird JC Evolution; 2024 Oct; 78(11):1790-1803. PubMed ID: 38995057 [TBL] [Abstract][Full Text] [Related]
8. Polymorphic duplicate genes and persistent non-coding sequences reveal heterogeneous patterns of mitochondrial DNA loss in salamanders. Chong RA; Mueller RL BMC Genomics; 2017 Dec; 18(1):992. PubMed ID: 29281973 [TBL] [Abstract][Full Text] [Related]
9. Mother's curse is pervasive across a large mitonuclear Carnegie L; Reuter M; Fowler K; Lane N; Camus MF Evol Lett; 2021 Jun; 5(3):230-239. PubMed ID: 34136271 [TBL] [Abstract][Full Text] [Related]
10. Few Nuclear-Encoded Mitochondrial Gene Duplicates Contribute to Male Germline-Specific Functions in Humans. Eslamieh M; Williford A; Betrán E Genome Biol Evol; 2017 Oct; 9(10):2782-2790. PubMed ID: 28985295 [TBL] [Abstract][Full Text] [Related]
11. The Roles of Mutation, Selection, and Expression in Determining Relative Rates of Evolution in Mitochondrial versus Nuclear Genomes. Havird JC; Sloan DB Mol Biol Evol; 2016 Dec; 33(12):3042-3053. PubMed ID: 27563053 [TBL] [Abstract][Full Text] [Related]
12. Coadaptation of mitochondrial and nuclear genes, and the cost of mother's curse. Connallon T; Camus MF; Morrow EH; Dowling DK Proc Biol Sci; 2018 Jan; 285(1871):. PubMed ID: 29343598 [TBL] [Abstract][Full Text] [Related]
13. The Mitonuclear Dimension of Neanderthal and Denisovan Ancestry in Modern Human Genomes. Sharbrough J; Havird JC; Noe GR; Warren JM; Sloan DB Genome Biol Evol; 2017 Jun; 9(6):1567-1581. PubMed ID: 28854627 [TBL] [Abstract][Full Text] [Related]
14. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution. Havird JC; Whitehill NS; Snow CD; Sloan DB Evolution; 2015 Dec; 69(12):3069-81. PubMed ID: 26514987 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial-nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes? Zhang F; Broughton RE Genome Biol Evol; 2013; 5(10):1781-91. PubMed ID: 23995460 [TBL] [Abstract][Full Text] [Related]
16. Factors affecting mito-nuclear codon usage interactions in the OXPHOS system of Drosophila melanogaster. Sun Z; Ma L; Murphy RW; Zhang X; Huang D J Genet Genomics; 2008 Dec; 35(12):729-35. PubMed ID: 19103428 [TBL] [Abstract][Full Text] [Related]
17. Mitonuclear Mate Choice: A Missing Component of Sexual Selection Theory? Hill GE Bioessays; 2018 Mar; 40(3):. PubMed ID: 29405334 [TBL] [Abstract][Full Text] [Related]