These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30942855)

  • 1. Sexually Antagonistic Mitonuclear Coevolution in Duplicate Oxidative Phosphorylation Genes.
    Havird JC; McConie HJ
    Integr Comp Biol; 2019 Oct; 59(4):864-874. PubMed ID: 30942855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxed selection on male mitochondrial genes in DUI bivalves eases the need for mitonuclear coevolution.
    Maeda GP; Iannello M; McConie HJ; Ghiselli F; Havird JC
    J Evol Biol; 2021 Nov; 34(11):1722-1736. PubMed ID: 34533872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves.
    Piccinini G; Iannello M; Puccio G; Plazzi F; Havird JC; Ghiselli F
    Mol Biol Evol; 2021 May; 38(6):2597-2614. PubMed ID: 33616640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Signatures of Mitonuclear Coevolution in Mammals.
    Weaver RJ; Rabinowitz S; Thueson K; Havird JC
    Mol Biol Evol; 2022 Nov; 39(11):. PubMed ID: 36288802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila.
    Gallach M; Chandrasekaran C; Betrán E
    Genome Biol Evol; 2010; 2():835-50. PubMed ID: 21037198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the oxidative phosphorylation (OXPHOS) nuclear genes in the genomes of Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae.
    Tripoli G; D'Elia D; Barsanti P; Caggese C
    Genome Biol; 2005; 6(2):R11. PubMed ID: 15693940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitonuclear compatibility is maintained despite relaxed selection on male mitochondrial DNA in bivalves with doubly uniparental inheritance.
    Smith CH; Mejia-Trujillo R; Havird JC
    Evolution; 2024 Oct; 78(11):1790-1803. PubMed ID: 38995057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphic duplicate genes and persistent non-coding sequences reveal heterogeneous patterns of mitochondrial DNA loss in salamanders.
    Chong RA; Mueller RL
    BMC Genomics; 2017 Dec; 18(1):992. PubMed ID: 29281973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mother's curse is pervasive across a large mitonuclear
    Carnegie L; Reuter M; Fowler K; Lane N; Camus MF
    Evol Lett; 2021 Jun; 5(3):230-239. PubMed ID: 34136271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Few Nuclear-Encoded Mitochondrial Gene Duplicates Contribute to Male Germline-Specific Functions in Humans.
    Eslamieh M; Williford A; Betrán E
    Genome Biol Evol; 2017 Oct; 9(10):2782-2790. PubMed ID: 28985295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Roles of Mutation, Selection, and Expression in Determining Relative Rates of Evolution in Mitochondrial versus Nuclear Genomes.
    Havird JC; Sloan DB
    Mol Biol Evol; 2016 Dec; 33(12):3042-3053. PubMed ID: 27563053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coadaptation of mitochondrial and nuclear genes, and the cost of mother's curse.
    Connallon T; Camus MF; Morrow EH; Dowling DK
    Proc Biol Sci; 2018 Jan; 285(1871):. PubMed ID: 29343598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mitonuclear Dimension of Neanderthal and Denisovan Ancestry in Modern Human Genomes.
    Sharbrough J; Havird JC; Noe GR; Warren JM; Sloan DB
    Genome Biol Evol; 2017 Jun; 9(6):1567-1581. PubMed ID: 28854627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution.
    Havird JC; Whitehill NS; Snow CD; Sloan DB
    Evolution; 2015 Dec; 69(12):3069-81. PubMed ID: 26514987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial-nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes?
    Zhang F; Broughton RE
    Genome Biol Evol; 2013; 5(10):1781-91. PubMed ID: 23995460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting mito-nuclear codon usage interactions in the OXPHOS system of Drosophila melanogaster.
    Sun Z; Ma L; Murphy RW; Zhang X; Huang D
    J Genet Genomics; 2008 Dec; 35(12):729-35. PubMed ID: 19103428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitonuclear Mate Choice: A Missing Component of Sexual Selection Theory?
    Hill GE
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29405334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative rates of evolution of male-beneficial nuclear compensatory mutations and male-harming Mother's Curse mitochondrial alleles.
    Dapper AL; Diegel AE; Wade MJ
    Evolution; 2023 Sep; 77(9):1945-1955. PubMed ID: 37208299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong selective effects of mitochondrial DNA on the nuclear genome.
    Healy TM; Burton RS
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6616-6621. PubMed ID: 32156736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies.
    Wolff JN; Pichaud N; Camus MF; Côté G; Blier PU; Dowling DK
    J Evol Biol; 2016 Apr; 29(4):736-47. PubMed ID: 26728607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.