BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30943090)

  • 1. Rapid adaptation to Coriolis force perturbations of voluntary body sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2028-2041. PubMed ID: 30943090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation to Coriolis force perturbations of postural sway requires an asymmetric two-leg model.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2042-2060. PubMed ID: 30943111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to Coriolis perturbations of voluntary body sway transfers to preprogrammed fall-recovery behavior.
    Bakshi A; Ventura J; DiZio P; Lackner JR
    J Neurophysiol; 2014 Mar; 111(5):977-83. PubMed ID: 24304863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements.
    Lackner JR; Dizio P
    J Neurophysiol; 1998 Aug; 80(2):546-53. PubMed ID: 9705449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid adaptation to Coriolis force perturbations of arm trajectory.
    Lackner JR; Dizio P
    J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Congenitally blind individuals rapidly adapt to coriolis force perturbations of their reaching movements.
    DiZio P; Lackner JR
    J Neurophysiol; 2000 Oct; 84(4):2175-80. PubMed ID: 11024106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaching during virtual rotation: context specific compensations for expected coriolis forces.
    Cohn JV; DiZio P; Lackner JR
    J Neurophysiol; 2000 Jun; 83(6):3230-40. PubMed ID: 10848543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation in a rotating artificial gravity environment.
    Lackner JR; DiZio P
    Brain Res Brain Res Rev; 1998 Nov; 28(1-2):194-202. PubMed ID: 9795214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical analysis of quiet stance sway in 2-D.
    Bakshi A; DiZio P; Lackner JR
    Exp Brain Res; 2014 Apr; 232(4):1095-108. PubMed ID: 24477760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field.
    Lai EJ; Hodgson AJ; Milner TE
    Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coriolis-force-induced trajectory and endpoint deviations in the reaching movements of labyrinthine-defective subjects.
    DiZio P; Lackner JR
    J Neurophysiol; 2001 Feb; 85(2):784-9. PubMed ID: 11160512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of hypergravity on upright balance and voluntary sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2020 Dec; 124(6):1986-1994. PubMed ID: 32997579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balance in a rotating artificial gravity environment.
    Soeda K; DiZio P; Lackner JR
    Exp Brain Res; 2003 Jan; 148(2):266-71. PubMed ID: 12520417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation.
    DiZio P; Lackner JR
    J Vestib Res; 2002-2003; 12(5-6):291-9. PubMed ID: 14501105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to rotating artificial gravity environments.
    Lackner JR; DiZio PA
    J Vestib Res; 2003; 13(4-6):321-30. PubMed ID: 15096675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of arm reaching movements during voluntary and passive rotation of the torso.
    Bortolami SB; Pigeon P; Dizio P; Lackner JR
    Exp Brain Res; 2008 Jun; 187(4):509-23. PubMed ID: 18330550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial orientation and balance control changes induced by altered gravitoinertial force vectors.
    Kaufman GD; Wood SJ; Gianna CC; Black FO; Paloski WH
    Exp Brain Res; 2001 Apr; 137(3-4):397-410. PubMed ID: 11355385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple roles of active stiffness in upright balance and multidirectional sway.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2020 Dec; 124(6):1995-2011. PubMed ID: 32997568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of muscle coactivation in adaptation of standing posture during arm reaching.
    Pienciak-Siewert A; Horan DP; Ahmed AA
    J Neurophysiol; 2020 Feb; 123(2):529-547. PubMed ID: 31851559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.