These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30943091)

  • 1. A supervised machine learning approach to characterize spinal network function.
    Dalrymple AN; Sharples SA; Osachoff N; Lognon AP; Whelan PJ
    J Neurophysiol; 2019 Jun; 121(6):2001-2012. PubMed ID: 30943091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemisegmental localisation of rhythmic networks in the lumbosacral spinal cord of neonate mouse.
    Bonnot A; Morin D
    Brain Res; 1998 May; 793(1-2):136-48. PubMed ID: 9630574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interneurone bursts are spontaneously associated with muscle contractions only during early phases of mouse spinal network development: a study in organotypic cultures.
    Rosato-Siri MD; Zoccolan D; Furlan F; Ballerini L
    Eur J Neurosci; 2004 Nov; 20(10):2697-710. PubMed ID: 15548213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window.
    Yvert B; Branchereau P; Meyrand P
    J Neurophysiol; 2004 May; 91(5):2101-9. PubMed ID: 14724265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord.
    Tabak J; Rinzel J; O'Donovan MJ
    J Neurosci; 2001 Nov; 21(22):8966-78. PubMed ID: 11698607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spontaneous activity of the developing neuronal networks].
    Sheroziia MG; Egorov AV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2010; 60(4):387-96. PubMed ID: 20873128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganization of the human central nervous system.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of the central pattern generator for locomotion in the rat and mouse.
    Nishimaru H; Kudo N
    Brain Res Bull; 2000 Nov; 53(5):661-9. PubMed ID: 11165801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat.
    Falgairolle M; Cazalets JR
    J Physiol; 2007 Apr; 580(Pt 1):87-102. PubMed ID: 17185345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquity of motor networks in the spinal cord of vertebrates.
    Cazalets JR; Bertrand S
    Brain Res Bull; 2000 Nov; 53(5):627-34. PubMed ID: 11165798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse.
    Whelan P; Bonnot A; O'Donovan MJ
    J Neurophysiol; 2000 Dec; 84(6):2821-33. PubMed ID: 11110812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord.
    Cowley KC; Schmidt BJ
    J Neurophysiol; 1997 Jan; 77(1):247-59. PubMed ID: 9120567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of spontaneous activity in developing spinal networks.
    O'Donovan MJ; Chub N; Wenner P
    J Neurobiol; 1998 Oct; 37(1):131-45. PubMed ID: 9777737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network.
    Tabak J; Senn W; O'Donovan MJ; Rinzel J
    J Neurosci; 2000 Apr; 20(8):3041-56. PubMed ID: 10751456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of lumbar rhythmic networks: from embryonic to neonate locomotor-like patterns in the mouse.
    Branchereau P; Morin D; Bonnot A; Ballion B; Chapron J; Viala D
    Brain Res Bull; 2000 Nov; 53(5):711-8. PubMed ID: 11165805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shaping the Output of Lumbar Flexor Motoneurons by Sacral Neuronal Networks.
    Cherniak M; Anglister L; Lev-Tov A
    J Neurosci; 2017 Feb; 37(5):1294-1311. PubMed ID: 28025254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent Sodium Current Drives Excitability of Immature Renshaw Cells in Early Embryonic Spinal Networks.
    Boeri J; Le Corronc H; Lejeune FX; Le Bras B; Mouffle C; Angelim MKSC; Mangin JM; Branchereau P; Legendre P; Czarnecki A
    J Neurosci; 2018 Aug; 38(35):7667-7682. PubMed ID: 30012693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A₁ adenosine receptor modulation of chemically and electrically evoked lumbar locomotor network activity in isolated newborn rat spinal cords.
    Taccola G; Olivieri D; D'Angelo G; Blackburn P; Secchia L; Ballanyi K
    Neuroscience; 2012 Oct; 222():191-204. PubMed ID: 22824428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early prediction of developing spontaneous activity in cultured neuronal networks.
    Cabrera-Garcia D; Warm D; de la Fuente P; Fernández-Sánchez MT; Novelli A; Villanueva-Balsera JM
    Sci Rep; 2021 Oct; 11(1):20407. PubMed ID: 34650146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.