BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30943459)

  • 1. 3D bioprinting of triphasic nanocomposite hydrogels and scaffolds for cell adhesion and migration.
    Motealleh A; Dorri P; Schäfer AH; Kehr NS
    Biofabrication; 2019 May; 11(3):035022. PubMed ID: 30943459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration.
    Motealleh A; Çelebi-Saltik B; Ermis N; Nowak S; Khademhosseini A; Kehr NS
    Biofabrication; 2019 Aug; 11(4):045015. PubMed ID: 31344690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirality-dependent cell adhesion and enrichment in Janus nanocomposite hydrogels.
    Motealleh A; Hermes H; Jose J; Kehr NS
    Nanomedicine; 2018 Feb; 14(2):247-256. PubMed ID: 29128663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Janus Nanocomposite Hydrogels for Chirality-Dependent Cell Adhesion and Migration.
    Motealleh A; Seda Kehr N
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33674-33682. PubMed ID: 28880531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiomorphous Periodic Mesoporous Organosilica-Based Nanocomposite Hydrogel Scaffolds for Cell Adhesion and Cell Enrichment.
    Kehr NS
    Biomacromolecules; 2016 Mar; 17(3):1117-22. PubMed ID: 26811946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.
    Seda Kehr N; Riehemann K
    Adv Healthc Mater; 2016 Jan; 5(2):193-7. PubMed ID: 26648333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue.
    Romanazzo S; Vedicherla S; Moran C; Kelly DJ
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1826-e1835. PubMed ID: 29105354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting.
    Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B
    Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.
    Carlier A; Skvortsov GA; Hafezi F; Ferraris E; Patterson J; Koç B; Van Oosterwyck H
    Biofabrication; 2016 May; 8(2):025009. PubMed ID: 27187017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding.
    Li H; Tan YJ; Liu S; Li L
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11164-11174. PubMed ID: 29517901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.
    Gaharwar AK; Rivera C; Wu CJ; Chan BK; Schmidt G
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1800-7. PubMed ID: 23827639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinted complex constructs reinforced by hybrid multilayers of electrospun nanofiber sheets.
    Yoon Y; Kim CH; Lee JE; Yoon J; Lee NK; Kim TH; Park SH
    Biofabrication; 2019 Mar; 11(2):025015. PubMed ID: 30786264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
    Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME
    Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering.
    Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H
    Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell sheet based bioink for 3D bioprinting applications.
    Bakirci E; Toprakhisar B; Zeybek MC; Ince GO; Koc B
    Biofabrication; 2017 Jun; 9(2):024105. PubMed ID: 28569243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology and direct write printing of chitosan - graphene oxide nanocomposite hydrogels for differentiation of neuroblastoma cells.
    Marapureddy SG; Hivare P; Sharma A; Chakraborty J; Ghosh S; Gupta S; Thareja P
    Carbohydr Polym; 2021 Oct; 269():118254. PubMed ID: 34294291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures.
    Mendes BB; Gómez-Florit M; Hamilton AG; Detamore MS; Domingues RMA; Reis RL; Gomes ME
    Biofabrication; 2019 Nov; 12(1):015012. PubMed ID: 31323659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels.
    Mollica PA; Booth-Creech EN; Reid JA; Zamponi M; Sullivan SM; Palmer XL; Sachs PC; Bruno RD
    Acta Biomater; 2019 Sep; 95():201-213. PubMed ID: 31233891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoll collagen solution as a novel bioink for direct 3D bioprinting.
    Osidak EO; Karalkin PA; Osidak MS; Parfenov VA; Sivogrivov DE; Pereira FDAS; Gryadunova AA; Koudan EV; Khesuani YD; Кasyanov VA; Belousov SI; Krasheninnikov SV; Grigoriev TE; Chvalun SN; Bulanova EA; Mironov VA; Domogatsky SP
    J Mater Sci Mater Med; 2019 Mar; 30(3):31. PubMed ID: 30830351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.