These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30944156)

  • 1. The Spatial Distribution of Chlorophyll in Leaves.
    Borsuk AM; Brodersen CR
    Plant Physiol; 2019 Jul; 180(3):1406-1417. PubMed ID: 30944156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.
    Mänd P; Hallik L; Peñuelas J; Kull O
    Tree Physiol; 2013 Feb; 33(2):202-10. PubMed ID: 23185067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf architecture and direction of incident light influence mesophyll fluorescence profiles.
    Johnson DM; Smith WK; Vogelmann TC; Brodersen CR
    Am J Bot; 2005 Sep; 92(9):1425-31. PubMed ID: 21646160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variegation in Arum italicum leaves. A structural-functional study.
    La Rocca N; Rascio N; Pupillo P
    Plant Physiol Biochem; 2011 Dec; 49(12):1392-8. PubMed ID: 22078376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Untangling metabolic and spatial interactions of stress tolerance in plants. 1. Patterns of carbon metabolism within leaves.
    Biel KY; Fomina IR; Nazarova GN; Soukhovolsky VG; Khlebopros RG; Nishio JN
    Protoplasma; 2010 Sep; 245(1-4):49-73. PubMed ID: 20449759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogenetic differences in mesophyll structure and chlorophyll distribution in Eucalyptus globulus ssp. globulus.
    James SA; Smith WK; Vogelmann TC
    Am J Bot; 1999 Feb; 86(2):198-207. PubMed ID: 21680359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues?
    Hormaetxe K; Becerril JM; Fleck I; Pintó M; García-Plazaola JI
    J Exp Bot; 2005 Oct; 56(420):2629-36. PubMed ID: 16105855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf factors affecting the relationship between chlorophyll fluorescence and the rate of photosynthetic electron transport as determined from CO2 uptake.
    Tsuyama M; Shibata M; Kobayashi Y
    J Plant Physiol; 2003 Oct; 160(10):1131-9. PubMed ID: 14610881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why abaxial illumination limits photosynthetic carbon fixation in spinach leaves.
    Sun J; Nishio J
    Plant Cell Physiol; 2001 Jan; 42(1):1-8. PubMed ID: 11158438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning of mesophyll conductance for CO
    Šantrůček J; Schreiber L; Macková J; Vráblová M; Květoň J; Macek P; Neuwirthová J
    Photosynth Res; 2019 Jul; 141(1):33-51. PubMed ID: 30806882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand.
    Ishida A; Yamazaki JY; Harayama H; Yazaki K; Ladpala P; Nakano T; Adachi M; Yoshimura K; Panuthai S; Staporn D; Maeda T; Maruta E; Diloksumpun S; Puangchit L
    Tree Physiol; 2014 Jan; 34(1):15-28. PubMed ID: 24336612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond Porosity: 3D Leaf Intercellular Airspace Traits That Impact Mesophyll Conductance.
    Earles JM; Theroux-Rancourt G; Roddy AB; Gilbert ME; McElrone AJ; Brodersen CR
    Plant Physiol; 2018 Sep; 178(1):148-162. PubMed ID: 30042212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field.
    Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR
    J Exp Bot; 2009; 60(8):2249-70. PubMed ID: 19395391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation of photosynthesis during plant evolution and domestication: implications for improving crop photosynthesis.
    Huang G; Peng S; Li Y
    J Exp Bot; 2022 Aug; 73(14):4886-4896. PubMed ID: 35436322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Sites of Evaporation within Leaves.
    Buckley TN; John GP; Scoffoni C; Sack L
    Plant Physiol; 2017 Mar; 173(3):1763-1782. PubMed ID: 28153921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model.
    Evans JR
    Plant Cell Physiol; 2009 Apr; 50(4):698-706. PubMed ID: 19282373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera.
    Kyparissis A; Grammatikopoulos G; Manetas Y
    Tree Physiol; 2007 Jun; 27(6):849-57. PubMed ID: 17331903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms.
    Chondrogiannis C; Grammatikopoulos G
    Photosynth Res; 2016 Dec; 130(1-3):427-444. PubMed ID: 27220729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf anatomy does not explain apparent short-term responses of mesophyll conductance to light and CO
    Carriquí M; Douthe C; Molins A; Flexas J
    Physiol Plant; 2019 Mar; 165(3):604-618. PubMed ID: 29744895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic and structural acclimation to light direction in vertical leaves of Silphium terebinthinaceum.
    Poulson ME; DeLucia EH
    Oecologia; 1993 Sep; 95(3):393-400. PubMed ID: 28314016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.