These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30944219)

  • 21. Advances in Computational Studies of the Liquid-Liquid Transition in Water and Water-Like Models.
    Palmer JC; Poole PH; Sciortino F; Debenedetti PG
    Chem Rev; 2018 Sep; 118(18):9129-9151. PubMed ID: 30152693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quinaldine: accessing two crystalline polymorphs via the supercooled liquid.
    Kahlau R; Gnutzmann T; Emmerling F; Rademann K; Rössler EA
    J Chem Phys; 2012 Aug; 137(5):054505. PubMed ID: 22894362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase-ordering kinetics of the liquid-liquid transition in single-component molecular liquids.
    Kurita R; Tanaka H
    J Chem Phys; 2007 May; 126(20):204505. PubMed ID: 17552776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture.
    Murata K; Tanaka H
    Nat Mater; 2012 Mar; 11(5):436-43. PubMed ID: 22426459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liquid-liquid transition kinetics in D-mannitol.
    Cao C; Tang W; Perepezko JH
    J Chem Phys; 2022 Aug; 157(7):071101. PubMed ID: 35987598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The reversibility and first-order nature of liquid-liquid transition in a molecular liquid.
    Kobayashi M; Tanaka H
    Nat Commun; 2016 Nov; 7():13438. PubMed ID: 27841349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of liquid-liquid transition in glass formation of CuZr alloys.
    Zhao X; Wang C; Zheng H; Tian Z; Hu L
    Phys Chem Chem Phys; 2017 Jun; 19(24):15962-15972. PubMed ID: 28594028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy States.
    Kothari K; Ragoonanan V; Suryanarayanan R
    Mol Pharm; 2014 Sep; 11(9):3048-55. PubMed ID: 25105216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signatures of a liquid-liquid transition in an ab initio deep neural network model for water.
    Gartner TE; Zhang L; Piaggi PM; Car R; Panagiotopoulos AZ; Debenedetti PG
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26040-26046. PubMed ID: 33008883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal Conductivity of Triphenyl Phosphite's Liquid, Glassy, and Glacial States.
    Krivchikov AI; Andersson O
    J Phys Chem B; 2016 Mar; 120(10):2845-53. PubMed ID: 26916579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical-like phenomena associated with liquid-liquid transition in a molecular liquid.
    Kurita R; Tanaka H
    Science; 2004 Oct; 306(5697):845-8. PubMed ID: 15514150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dielectric studies on molecular dynamics of two important disaccharides: sucrose and trehalose.
    Kaminski K; Adrjanowicz K; Zakowiecki D; Kaminska E; Wlodarczyk P; Paluch M; Pilch J; Tarnacka M
    Mol Pharm; 2012 Jun; 9(6):1559-69. PubMed ID: 22553901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct observation of reversible liquid-liquid transition in a trehalose aqueous solution.
    Suzuki Y
    Proc Natl Acad Sci U S A; 2022 Feb; 119(5):. PubMed ID: 35074875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics of the supercooled pharmaceutical agent posaconazole studied via differential scanning calorimetry and dielectric and mechanical spectroscopies.
    Adrjanowicz K; Kaminski K; Wlodarczyk P; Grzybowska K; Tarnacka M; Zakowiecki D; Garbacz G; Paluch M; Jurga S
    Mol Pharm; 2013 Oct; 10(10):3934-45. PubMed ID: 24010649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microscopic description of the polyamorphic phases of triphenyl phosphite by means of multidimensional solid-state NMR spectroscopy.
    Senker J; Sehnert J; Correll S
    J Am Chem Soc; 2005 Jan; 127(1):337-49. PubMed ID: 15631484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of glass-forming liquids. XVI. Observation of ultrastable glass transformation via dielectric spectroscopy.
    Chen Z; Sepúlveda A; Ediger MD; Richert R
    J Chem Phys; 2013 Mar; 138(12):12A519. PubMed ID: 23556770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Local Order Parameter-Based Method for Simulation of Free Energy Barriers in Crystal Nucleation.
    Eslami H; Khanjari N; Müller-Plathe F
    J Chem Theory Comput; 2017 Mar; 13(3):1307-1316. PubMed ID: 28195473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-Isochronal Behavior of Charge Transport at Liquid-Liquid and Liquid-Glass Transition in Aprotic Ionic Liquids.
    Koymeth S; Yao B; Paluch M; Dai S; Mokhtarinori N; Swadzba-Kwasny M; Wojnarowska Z
    J Phys Chem B; 2024 May; 128(20):5118-5126. PubMed ID: 38742730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mobility in the supercooled and glassy states of nizatidine and perphenazine.
    Sailaja U; Shahin Thayyil M; Krishna Kumar NS; Govindaraj G; Ngai KL
    Eur J Pharm Sci; 2017 Mar; 99():147-151. PubMed ID: 27916696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.