These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 30944383)
21. A novel root-to-shoot stomatal response to very high CO Lake JA; Walker HJ; Cameron DD; Lomax BH Physiol Plant; 2017 Apr; 159(4):433-444. PubMed ID: 27779760 [TBL] [Abstract][Full Text] [Related]
22. Contrasting development of lysigenous aerenchyma in two rice genotypes under phosphorus deficiency. Pujol V; Wissuwa M BMC Res Notes; 2018 Jan; 11(1):60. PubMed ID: 29357942 [TBL] [Abstract][Full Text] [Related]
23. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Abiko T; Obara M Plant Sci; 2014 Feb; 215-216():76-83. PubMed ID: 24388517 [TBL] [Abstract][Full Text] [Related]
24. Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields? Buckley CR; Caine RS; Gray JE Front Plant Sci; 2019; 10():1783. PubMed ID: 32117345 [TBL] [Abstract][Full Text] [Related]
25. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots. Yamauchi T; Nakazono M Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932 [TBL] [Abstract][Full Text] [Related]
26. Effects of stomata clustering on leaf gas exchange. Lehmann P; Or D New Phytol; 2015 Sep; 207(4):1015-25. PubMed ID: 25967110 [TBL] [Abstract][Full Text] [Related]
27. Rice Stomatal Mega-Papillae Restrict Water Loss and Pathogen Entry. Pitaloka MK; Harrison EL; Hepworth C; Wanchana S; Toojinda T; Phetluan W; Brench RA; Narawatthana S; Vanavichit A; Gray JE; Caine RS; Arikit S Front Plant Sci; 2021; 12():677839. PubMed ID: 34149777 [TBL] [Abstract][Full Text] [Related]
28. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Franks PJ; Farquhar GD Plant Physiol; 2001 Feb; 125(2):935-42. PubMed ID: 11161050 [TBL] [Abstract][Full Text] [Related]
29. Yu Q; Chen L; Zhou W; An Y; Luo T; Wu Z; Wang Y; Xi Y; Yan L; Hou S Front Plant Sci; 2020; 11():600021. PubMed ID: 33329664 [TBL] [Abstract][Full Text] [Related]
30. Absence of OsβCA1 causes a CO Chen T; Wu H; Wu J; Fan X; Li X; Lin Y Plant J; 2017 Apr; 90(2):344-357. PubMed ID: 28142196 [TBL] [Abstract][Full Text] [Related]
31. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions. Kato Y; Okami M Ann Bot; 2011 Sep; 108(3):575-83. PubMed ID: 21807692 [TBL] [Abstract][Full Text] [Related]
32. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Else MA; Janowiak F; Atkinson CJ; Jackson MB Ann Bot; 2009 Jan; 103(2):313-23. PubMed ID: 19001430 [TBL] [Abstract][Full Text] [Related]
33. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. Shimono H; Nakamura H; Hasegawa T; Okada M Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676 [TBL] [Abstract][Full Text] [Related]
34. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice. Lin C; Ogorek LLP; Pedersen O; Sauter M J Exp Bot; 2021 Feb; 72(5):1879-1890. PubMed ID: 33206163 [TBL] [Abstract][Full Text] [Related]