These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30944383)

  • 21. A novel root-to-shoot stomatal response to very high CO
    Lake JA; Walker HJ; Cameron DD; Lomax BH
    Physiol Plant; 2017 Apr; 159(4):433-444. PubMed ID: 27779760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contrasting development of lysigenous aerenchyma in two rice genotypes under phosphorus deficiency.
    Pujol V; Wissuwa M
    BMC Res Notes; 2018 Jan; 11(1):60. PubMed ID: 29357942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots.
    Abiko T; Obara M
    Plant Sci; 2014 Feb; 215-216():76-83. PubMed ID: 24388517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields?
    Buckley CR; Caine RS; Gray JE
    Front Plant Sci; 2019; 10():1783. PubMed ID: 32117345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots.
    Yamauchi T; Nakazono M
    Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of stomata clustering on leaf gas exchange.
    Lehmann P; Or D
    New Phytol; 2015 Sep; 207(4):1015-25. PubMed ID: 25967110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rice Stomatal Mega-Papillae Restrict Water Loss and Pathogen Entry.
    Pitaloka MK; Harrison EL; Hepworth C; Wanchana S; Toojinda T; Phetluan W; Brench RA; Narawatthana S; Vanavichit A; Gray JE; Caine RS; Arikit S
    Front Plant Sci; 2021; 12():677839. PubMed ID: 34149777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana.
    Franks PJ; Farquhar GD
    Plant Physiol; 2001 Feb; 125(2):935-42. PubMed ID: 11161050
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Yu Q; Chen L; Zhou W; An Y; Luo T; Wu Z; Wang Y; Xi Y; Yan L; Hou S
    Front Plant Sci; 2020; 11():600021. PubMed ID: 33329664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absence of OsβCA1 causes a CO
    Chen T; Wu H; Wu J; Fan X; Li X; Lin Y
    Plant J; 2017 Apr; 90(2):344-357. PubMed ID: 28142196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.
    Kato Y; Okami M
    Ann Bot; 2011 Sep; 108(3):575-83. PubMed ID: 21807692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants.
    Else MA; Janowiak F; Atkinson CJ; Jackson MB
    Ann Bot; 2009 Jan; 103(2):313-23. PubMed ID: 19001430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice.
    Lin C; Ogorek LLP; Pedersen O; Sauter M
    J Exp Bot; 2021 Feb; 72(5):1879-1890. PubMed ID: 33206163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.).
    Zhu J; Brown KM; Lynch JP
    Plant Cell Environ; 2010 May; 33(5):740-9. PubMed ID: 20519019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing water-use efficiency directly through genetic manipulation of stomatal density.
    Franks PJ; W Doheny-Adams T; Britton-Harper ZJ; Gray JE
    New Phytol; 2015 Jul; 207(1):188-195. PubMed ID: 25754246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerenchyma formation and porosity in root of a mangrove plant, Sonneratia alba (Lythraceae).
    Purnobasuki H; Suzuki M
    J Plant Res; 2004 Dec; 117(6):465-72. PubMed ID: 15538653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limitations of Photosynthesis in Pinus taeda L. (Loblolly Pine) at Low Soil Temperatures.
    Day TA; Heckathorn SA; Delucia EH
    Plant Physiol; 1991 Aug; 96(4):1246-54. PubMed ID: 16668326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties.
    Meinzer FC; Goldstein G; Jackson P; Holbrook NM; Gutiérrez MV; Cavelier J
    Oecologia; 1995 Apr; 101(4):514-522. PubMed ID: 28306968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar.
    Wang C; Liu S; Dong Y; Zhao Y; Geng A; Xia X; Yin W
    Plant Biotechnol J; 2016 Mar; 14(3):849-60. PubMed ID: 26228739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.