These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30944494)

  • 1. Nonreciprocal control and cooling of phonon modes in an optomechanical system.
    Xu H; Jiang L; Clerk AA; Harris JGE
    Nature; 2019 Apr; 568(7750):65-69. PubMed ID: 30944494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonreciprocal Frequency Conversion and Mode Routing in a Microresonator.
    Shen Z; Zhang YL; Chen Y; Xiao YF; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2023 Jan; 130(1):013601. PubMed ID: 36669210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonreciprocity and magnetic-free isolation based on optomechanical interactions.
    Ruesink F; Miri MA; Alù A; Verhagen E
    Nat Commun; 2016 Nov; 7():13662. PubMed ID: 27897165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optomechanically-induced nonreciprocal conversion between microwave and optical photons.
    Xing FF; Qin LG; Tian LJ; Wu XY; Huang JH
    Opt Express; 2023 Feb; 31(5):7120-7133. PubMed ID: 36859849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonreciprocal light transmission via optomechanical parametric interactions.
    Lan YT; Su WJ; Wu H; Li Y; Zheng SB
    Opt Lett; 2022 Mar; 47(5):1182-1185. PubMed ID: 35230322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing.
    Zhou YR; Zhang QF; Liu FF; Han YH; Gao YP; Fan L; Zhang R; Cao C
    Opt Express; 2024 Jan; 32(2):2786-2803. PubMed ID: 38297799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collision-Induced Broadband Optical Nonreciprocity.
    Liang C; Liu B; Xu AN; Wen X; Lu C; Xia K; Tey MK; Liu YC; You L
    Phys Rev Lett; 2020 Sep; 125(12):123901. PubMed ID: 33016716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonreciprocal reconfigurable microwave optomechanical circuit.
    Bernier NR; Tóth LD; Koottandavida A; Ioannou MA; Malz D; Nunnenkamp A; Feofanov AK; Kippenberg TJ
    Nat Commun; 2017 Sep; 8(1):604. PubMed ID: 28928450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonreciprocal Linear Transmission of Sound in a Viscous Environment with Broken P Symmetry.
    Walker E; Neogi A; Bozhko A; Zubov Y; Arriaga J; Heo H; Ju J; Krokhin AA
    Phys Rev Lett; 2018 May; 120(20):204501. PubMed ID: 29864343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Tian L; Guo GP
    Nat Commun; 2018 Jan; 9(1):383. PubMed ID: 29374169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical noise-resistant nonreciprocal phonon blockade in a spinning optomechanical resonator.
    Yuan N; He S; Li SY; Wang N; Zhu AD
    Opt Express; 2023 Jun; 31(12):20160-20173. PubMed ID: 37381416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonreciprocal acoustic propagation and leaky-wave radiation in a waveguide with flow.
    Wiederhold CP; Sounas DL; Alù A
    J Acoust Soc Am; 2019 Jul; 146(1):802. PubMed ID: 31370591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable phonon blockade in weakly nonlinear coupled mechanical resonators via Coulomb interaction.
    Sarma B; Sarma AK
    Sci Rep; 2018 Oct; 8(1):14583. PubMed ID: 30275501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonreciprocal optomechanically induced transparency and enhanced ground-state cooling in a reversed-dissipation cavity system.
    Zhang J; Li Y; Zhang Y
    Opt Express; 2024 Jan; 32(1):499-510. PubMed ID: 38175078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies.
    Cha J; Daraio C
    Nat Nanotechnol; 2018 Nov; 13(11):1016-1020. PubMed ID: 30201989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permanent Directional Heat Currents in Lattices of Optomechanical Resonators.
    Denis Z; Biella A; Favero I; Ciuti C
    Phys Rev Lett; 2020 Feb; 124(8):083601. PubMed ID: 32167363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipative optomechanics in high-frequency nanomechanical resonators.
    Primo AG; Pinho PV; Benevides R; Gröblacher S; Wiederhecker GS; Alegre TPM
    Nat Commun; 2023 Sep; 14(1):5793. PubMed ID: 37723162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent phonon dynamics in spatially separated graphene mechanical resonators.
    Zhang ZZ; Song XX; Luo G; Su ZJ; Wang KL; Cao G; Li HO; Xiao M; Guo GC; Tian L; Deng GW; Guo GP
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5582-5587. PubMed ID: 32123110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic phonons enable nonreciprocal coupling to arbitrary resonator networks.
    Peterson CW; Kim S; Bernhard JT; Bahl G
    Sci Adv; 2018 Jun; 4(6):eaat0232. PubMed ID: 29888328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic gauge fields for phonon transport in a nano-optomechanical system.
    Mathew JP; Pino JD; Verhagen E
    Nat Nanotechnol; 2020 Mar; 15(3):198-202. PubMed ID: 32015506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.