BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30944520)

  • 1. Diet-Related Metabolic Perturbations of Gut Microbial Shikimate Pathway-Tryptamine-tRNA Aminoacylation-Protein Synthesis in Human Health and Disease.
    Paley EL
    Int J Tryptophan Res; 2019; 12():1178646919834550. PubMed ID: 30944520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an Integrative Understanding of tRNA Aminoacylation-Diet-Host-Gut Microbiome Interactions in Neurodegeneration.
    Paley EL; Perry G
    Nutrients; 2018 Mar; 10(4):. PubMed ID: 29587458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics.
    Paley EL
    J Alzheimers Dis; 2019; 72(1):319-355. PubMed ID: 31561379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptamine induces tryptophanyl-tRNA synthetase-mediated neurodegeneration with neurofibrillary tangles in human cell and mouse models.
    Paley EL; Denisova G; Sokolova O; Posternak N; Wang X; Brownell AL
    Neuromolecular Med; 2007; 9(1):55-82. PubMed ID: 17114825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptamine-induced tryptophanyl-tRNAtrp deficiency in neurodifferentiation and neurodegeneration interplay: progenitor activation with neurite growth terminated in Alzheimer's disease neuronal vesicularization and fragmentation.
    Paley EL
    J Alzheimers Dis; 2011; 26(2):263-98. PubMed ID: 21628792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographical Distribution and Diversity of Gut Microbial NADH:Ubiquinone Oxidoreductase Sequence Associated with Alzheimer's Disease.
    Paley EL; Merkulova-Rainon T; Faynboym A; Shestopalov VI; Aksenoff I
    J Alzheimers Dis; 2018; 61(4):1531-1540. PubMed ID: 29376868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptamine induces axonopathy and mitochondriopathy mimicking neurodegenerative diseases via tryptophanyl-tRNA deficiency.
    Paley EL; Perry G; Sokolova O
    Curr Alzheimer Res; 2013 Nov; 10(9):987-1004. PubMed ID: 24117115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of Gut Microbial Tryptamine by SARS-CoV-2 in Nonhuman Primate Model Consistent with Tryptamine-Induced Model of Neurodegeneration.
    Paley EL
    J Alzheimers Dis Rep; 2021; 5(1):733-738. PubMed ID: 34755047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptamine-mediated stabilization of tryptophanyl-tRNA synthetase in human cervical carcinoma cell line.
    Paley EL
    Cancer Lett; 1999 Mar; 137(1):1-7. PubMed ID: 10376788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular recognition of tryptophan tRNA by tryptophanyl-tRNA synthetase from Aeropyrum pernix K1.
    Tsuchiya W; Hasegawa T
    J Biochem; 2009 May; 145(5):635-41. PubMed ID: 19179361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three G.C base pairs required for the efficient aminoacylation of tRNATrp by tryptophanyl-tRNA synthetase from Bacillus subtilis.
    Xu F; Jiang G; Li W; He X; Jin Y; Wang D
    Biochemistry; 2002 Jun; 41(25):8087-92. PubMed ID: 12069601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Understanding COVID-19: Molecular Insights, Co-infections, Associated Disorders, and Aging.
    Paley EL
    J Alzheimers Dis Rep; 2021; 5(1):571-600. PubMed ID: 34514341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping and molecular characterization of novel monoclonal antibodies to conformational epitopes on NH2 and COOH termini of mammalian tryptophanyl-tRNA synthetase reveal link of the epitopes to aggregation and Alzheimer's disease.
    Paley EL; Smelyanski L; Malinovskii V; Subbarayan PR; Berdichevsky Y; Posternak N; Gershoni JM; Sokolova O; Denisova G
    Mol Immunol; 2007 Jan; 44(4):541-57. PubMed ID: 16616781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P1,P3-bis(5'-adenosyl)triphosphate (Ap3A) as a substrate and a product of mammalian tryptophanyl-tRNA synthetase.
    Merkulova T; Kovaleva G; Kisselev L
    FEBS Lett; 1994 Aug; 350(2-3):287-90. PubMed ID: 8070580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity.
    Wakasugi K
    Biochemistry; 2007 Oct; 46(40):11291-8. PubMed ID: 17877375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective inhibition of apicoplast tryptophanyl-tRNA synthetase causes delayed death in Plasmodium falciparum.
    Pasaje CF; Cheung V; Kennedy K; Lim EE; Baell JB; Griffin MD; Ralph SA
    Sci Rep; 2016 Jun; 6():27531. PubMed ID: 27277538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-specific differences in the operational RNA code for aminoacylation of tRNA(Trp).
    Xu F; Chen X; Xin L; Chen L; Jin Y; Wang D
    Nucleic Acids Res; 2001 Oct; 29(20):4125-33. PubMed ID: 11600701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis.
    Ibba M; Sever S; Praetorius-Ibba M; Söll D
    Nucleic Acids Res; 1999 Sep; 27(18):3631-7. PubMed ID: 10471730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.