These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 30944580)
1. Microbial substrate preference dictated by energy demand, not supply. Amenabar MJ; Shock EL; Roden EE; Peters JW; Boyd ES Nat Geosci; 2017 Aug; 10(8):577-581. PubMed ID: 30944580 [TBL] [Abstract][Full Text] [Related]
2. Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile. Amenabar MJ; Colman DR; Poudel S; Roden EE; Boyd ES Environ Microbiol; 2018 Jul; 20(7):2523-2537. PubMed ID: 29749696 [TBL] [Abstract][Full Text] [Related]
3. Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile Rhim JH; Zhou A; Amenabar MJ; Boyer GM; Elling FJ; Weber Y; Pearson A; Boyd ES; Leavitt WD Appl Environ Microbiol; 2024 Feb; 90(2):e0136923. PubMed ID: 38236067 [TBL] [Abstract][Full Text] [Related]
4. Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Yoshida N; Nakasato M; Ohmura N; Ando A; Saiki H; Ishii M; Igarashi Y Curr Microbiol; 2006 Nov; 53(5):406-11. PubMed ID: 17066338 [TBL] [Abstract][Full Text] [Related]
5. Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Plumb JJ; Haddad CM; Gibson JAE; Franzmann PD Int J Syst Evol Microbiol; 2007 Jul; 57(Pt 7):1418-1423. PubMed ID: 17625168 [TBL] [Abstract][Full Text] [Related]
6. Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase. Ma K; Loessner H; Heider J; Johnson MK; Adams MW J Bacteriol; 1995 Aug; 177(16):4748-56. PubMed ID: 7642502 [TBL] [Abstract][Full Text] [Related]
7. Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures. Leung PM; Grinter R; Tudor-Matthew E; Lingford JP; Jimenez L; Lee HC; Milton M; Hanchapola I; Tanuwidjaya E; Kropp A; Peach HA; Carere CR; Stott MB; Schittenhelm RB; Greening C Nat Commun; 2024 Apr; 15(1):3219. PubMed ID: 38622143 [TBL] [Abstract][Full Text] [Related]
8. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Kashefi K; Tor JM; Holmes DE; Gaw Van Praagh CV; Reysenbach AL; Lovley DR Int J Syst Evol Microbiol; 2002 May; 52(Pt 3):719-728. PubMed ID: 12054231 [TBL] [Abstract][Full Text] [Related]
9. Differential expression of extracellular thiol groups of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on S(0) and Fe (2.). Liu HC; Xia JL; Nie ZY; Zhen XJ; Zhang LJ Arch Microbiol; 2015 Aug; 197(6):823-31. PubMed ID: 25983134 [TBL] [Abstract][Full Text] [Related]
10. Fe(III) as an electron acceptor for H2 oxidation in thermophilic anaerobic enrichment cultures from geothermal areas. Slobodkin AI; Wiegel J Extremophiles; 1997 May; 1(2):106-9. PubMed ID: 9680310 [TBL] [Abstract][Full Text] [Related]
11. Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. Ma K; Adams MW J Bacteriol; 1994 Nov; 176(21):6509-17. PubMed ID: 7961401 [TBL] [Abstract][Full Text] [Related]
12. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Ju X; Sierra-Alvarez R; Field JA; Byrnes DJ; Bentley H; Bentley R Chemosphere; 2008 Mar; 71(1):114-22. PubMed ID: 17988714 [TBL] [Abstract][Full Text] [Related]
13. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process. Nie ZY; Liu HC; Xia JL; Yang Y; Zhen XJ; Zhang LJ; Qiu GZ Biometals; 2016 Feb; 29(1):25-37. PubMed ID: 26645388 [TBL] [Abstract][Full Text] [Related]
14. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Slobodkin A; Reysenbach AL; Strutz N; Dreier M; Wiegel J Int J Syst Bacteriol; 1997 Apr; 47(2):541-7. PubMed ID: 9103646 [TBL] [Abstract][Full Text] [Related]
15. A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation. Hoijnen JJ; van Loosdrecht MC; Tijhuis L Biotechnol Bioeng; 1992 Dec; 40(10):1139-54. PubMed ID: 18601065 [TBL] [Abstract][Full Text] [Related]
16. Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. He ZG; Zhong H; Li Y Curr Microbiol; 2004 Feb; 48(2):159-63. PubMed ID: 15057486 [TBL] [Abstract][Full Text] [Related]
17. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus. Meng L; Ruebush S; D'souza VM; Copik AJ; Tsunasawa S; Holz RC Biochemistry; 2002 Jun; 41(23):7199-208. PubMed ID: 12044150 [TBL] [Abstract][Full Text] [Related]
18. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Zavarzina DG; Sokolova TG; Tourova TP; Chernyh NA; Kostrikina NA; Bonch-Osmolovskaya EA Extremophiles; 2007 Jan; 11(1):1-7. PubMed ID: 16988758 [TBL] [Abstract][Full Text] [Related]
19. Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Cord-Ruwisch R; Lovley DR; Schink B Appl Environ Microbiol; 1998 Jun; 64(6):2232-6. PubMed ID: 9603840 [TBL] [Abstract][Full Text] [Related]
20. Extracellular Electron Uptake by Acetogenic Bacteria: Does H Philips J Front Microbiol; 2019; 10():2997. PubMed ID: 31998274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]