These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 3094470)
1. Behavioral effects of lithium on presynaptic sites of catecholaminergic neurons in the mouse. Ushijima I; Yamada K; Furukawa T Arch Int Pharmacodyn Ther; 1986 Jul; 282(1):58-67. PubMed ID: 3094470 [TBL] [Abstract][Full Text] [Related]
2. Progressive augmentation of locomotor activity in mice by long-term treatment with thyrotropin releasing hormone. Ushijima I; Yamada K; Noda Y; Furukawa T Arch Int Pharmacodyn Ther; 1984 Jul; 270(1):29-37. PubMed ID: 6437352 [TBL] [Abstract][Full Text] [Related]
3. Biphasic effects of thyrotropin-releasing hormone on exploratory behavior in mice. Ushijima I; Yamada K; Furukawa T; Noda Y; Todoroki M; Inanaga K Arch Int Pharmacodyn Ther; 1980 Oct; 247(2):257-63. PubMed ID: 6778401 [TBL] [Abstract][Full Text] [Related]
4. Effects of acute and long-term treatments with thyrotropin-releasing hormone on locomotor activity and jumping behavior in mice. Ushijima I; Mizuki Y; Hara T; Watanabe K; Hirano H; Yamada M; Glavin GB Pharmacol Biochem Behav; 1986 May; 24(5):1423-8. PubMed ID: 3088609 [TBL] [Abstract][Full Text] [Related]
5. Modifications by lithium of behavioral responses to methamphetamine and tetrabenazine. Furukawa T; Ushizima I; Ono N Psychopharmacologia; 1975 Jun; 42(3):243-8. PubMed ID: 1161982 [TBL] [Abstract][Full Text] [Related]
6. Time-dependent effects of antidepressant drugs on the low dose of apomorphine-induced locomotor hypoactivity in rats. Dziedzicka-Wasylewska M; Rogóz Z Pol J Pharmacol; 1997; 49(5):337-43. PubMed ID: 9566033 [TBL] [Abstract][Full Text] [Related]
7. Beta-phenylethylamine and locomotor activity in mice. Interaction with catecholaminergic neurones and receptors. Jackson DM Arzneimittelforschung; 1975 Apr; 25(4):622-6. PubMed ID: 168908 [TBL] [Abstract][Full Text] [Related]
8. [Behavioral effects of amantadine on ambulatory activity and drinking in mice and on continuous and discrete avoidance responses in rats]. Kuribara H; Tadokoro S Nihon Yakurigaku Zasshi; 1984 Feb; 83(2):147-58. PubMed ID: 6745805 [TBL] [Abstract][Full Text] [Related]
9. Injection of apomorphine--a test to predict individual different dopaminergic sensitivity? Surmann A; Havemann-Reinecke U J Neural Transm Suppl; 1995; 45():143-55. PubMed ID: 8748620 [TBL] [Abstract][Full Text] [Related]
10. Sensorimotor gating effects produced by repeated dopamine agonists in a paradigm favoring environmental conditioning. Feifel D; Priebe K; Johnstone-Miller E; Morgan CJ Psychopharmacology (Berl); 2002 Jul; 162(2):138-46. PubMed ID: 12110991 [TBL] [Abstract][Full Text] [Related]
11. Individual differences to repeated ethanol administration may predict locomotor response to other drugs, and vice versa. Abrahao KP; Quadros IM; Souza-Formigoni ML Behav Brain Res; 2009 Feb; 197(2):404-10. PubMed ID: 18984011 [TBL] [Abstract][Full Text] [Related]
12. Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. Perrault G; Depoortere R; Morel E; Sanger DJ; Scatton B J Pharmacol Exp Ther; 1997 Jan; 280(1):73-82. PubMed ID: 8996184 [TBL] [Abstract][Full Text] [Related]
13. Effects of chronic dietary lithium on behavioral indices of dopamine denervation supersensitivity in the rat. Swerdlow NR; Lee D; Koob GF; Vaccarino FJ J Pharmacol Exp Ther; 1985 Nov; 235(2):324-9. PubMed ID: 3932641 [TBL] [Abstract][Full Text] [Related]
14. Interactions of neurotensin with brain dopamine systems: biochemical and behavioral studies. Nemeroff CB; Luttinger D; Hernandez DE; Mailman RB; Mason GA; Davis SD; Widerlöv E; Frye GD; Kilts CA; Beaumont K; Breese GR; Prange AJ J Pharmacol Exp Ther; 1983 May; 225(2):337-45. PubMed ID: 6682440 [TBL] [Abstract][Full Text] [Related]
15. Behavioral sensitization to dopaminergic inhibitory and stimulatory effects induced by low vs. high dose apomorphine treatments: an unconventional dose and response reversal sensitization challenge test reveals sensitization mechanisms. Braga PQ; Dias FR; Carey RJ; Carrera MP Behav Brain Res; 2009 Dec; 204(1):169-74. PubMed ID: 19520118 [TBL] [Abstract][Full Text] [Related]
16. GABA(A) receptors mediate the attenuating effects of a 5-HT(3) receptor antagonist on methamphetamine-induced behavioral sensitization in mice. Yoo JH; Lee HK; Kim HC; Lee SY; Jang CG Synapse; 2010 Apr; 64(4):274-9. PubMed ID: 19953653 [TBL] [Abstract][Full Text] [Related]
17. Deprenyl (selegiline), a selective MAO-B inhibitor with active metabolites; effects on locomotor activity, dopaminergic neurotransmission and firing rate of nigral dopamine neurons. Engberg G; Elebring T; Nissbrandt H J Pharmacol Exp Ther; 1991 Nov; 259(2):841-7. PubMed ID: 1658311 [TBL] [Abstract][Full Text] [Related]
18. The atypical antipsychotic profile of NRA0045, a novel dopamine D4 and 5-hydroxytryptamine2A receptor antagonist, in rats. Okuyama S; Chaki S; Kawashima N; Suzuki Y; Ogawa S; Kumagai T; Nakazato A; Nagamine M; Yamaguchi K; Tomisawa K Br J Pharmacol; 1997 Jun; 121(3):515-25. PubMed ID: 9179395 [TBL] [Abstract][Full Text] [Related]
19. Effects of tetrabenazine on methamphetamine-induced hyperactivity in mice are dependent on order and time-course of administration. Kuribara H Pharmacol Biochem Behav; 1997 Jan; 56(1):9-14. PubMed ID: 8981603 [TBL] [Abstract][Full Text] [Related]
20. Effects of 24-hr fasting on methamphetamine- and apomorphine-induced locomotor activities, and on monoamine metabolism in mouse corpus striatum and nucleus accumbens. Itoh T; Murai S; Nagahama H; Miyate H; Abe E; Fujiwara H; Saito Y Pharmacol Biochem Behav; 1990 Feb; 35(2):391-6. PubMed ID: 2320647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]