BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30944787)

  • 1. Integrated strategy of temperature shift and mannitol feeding for enhanced production of echinocandin B by
    Zou SP; Xiong Y; Niu K; Hu ZC; Zheng YG
    3 Biotech; 2019 Apr; 9(4):140. PubMed ID: 30944787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparative separation of echinocandin B from Aspergillus nidulans broth using macroporous resin adsorption chromatography.
    Zou SP; Liu M; Wang QL; Xiong Y; Niu K; Zheng YG; Shen YC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 978-979():111-7. PubMed ID: 25541471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenesis breeding of high echinocandin B producing strain and further titer improvement with culture medium optimization.
    Zou SP; Zhong W; Xia CJ; Gu YN; Niu K; Zheng YG; Shen YC
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1845-54. PubMed ID: 26091897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lipids and surfactants on the fermentation production of echinocandin B by Aspergillus nidulans.
    Niu K; Wu XP; Fu Q; Lang KP; Zou SP; Hu ZC; Liu ZQ; Zheng YG
    J Appl Microbiol; 2021 Dec; 131(6):2849-2860. PubMed ID: 33987908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced fed-batch production of pyrroloquinoline quinine in Methylobacillus sp. CCTCC M2016079 with a two-stage pH control strategy.
    Si Z; Machaku D; Wei P; Huang L; Cai J; Xu Z
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4915-4922. PubMed ID: 28374050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy.
    Li X; Lin Y; Chang M; Jin Q; Wang X
    Bioresour Technol; 2015 Apr; 181():275-82. PubMed ID: 25661306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of microparticles on echinocandin B production by Aspergillus nidulans].
    Niu K; Hu Y; Mao J; Zou S; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1082-8. PubMed ID: 26647583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of stcA blocks sterigmatocystin biosynthesis and improves echinocandin B production in Aspergillus delacroxii.
    Min T; Xiong L; Liang Y; Xu R; Fa C; Yang S; Hu H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):109. PubMed ID: 31280382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of methyl oleate and microparticle-enhanced cultivation on echinocandin B fermentation titer.
    Niu K; Wu XP; Hu XL; Zou SP; Hu ZC; Liu ZQ; Zheng YG
    Bioprocess Biosyst Eng; 2020 Nov; 43(11):2009-2015. PubMed ID: 32557175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The echinocandin B producer fungus Aspergillus nidulans var. roseus ATCC 58397 does not possess innate resistance against its lipopeptide antimycotic.
    Tóth V; Nagy CT; Pócsi I; Emri T
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):113-22. PubMed ID: 22555909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Echinocandin B Production by a UV- and Microwave-Induced Mutant of Aspergillus nidulans with Precursor- and Biotin-Supplying Strategy.
    Hu ZC; Peng LY; Zheng YG
    Appl Biochem Biotechnol; 2016 Aug; 179(7):1213-26. PubMed ID: 27039401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of echinocandin B overproducing
    Hu ZC; Li WJ; Zou SP; Niu K; Zheng YG
    Prep Biochem Biotechnol; 2020; 50(8):745-752. PubMed ID: 32125248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deacylation of Echinocandin B by Streptomyces species: a novel method for the production of Echinocandin B nucleus.
    Shivakumar MC; Manohar S; Ishwar B; Raghu P; Savitha J
    3 Biotech; 2019 Nov; 9(11):412. PubMed ID: 31696017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol.
    Yang LB; Zhan XB; Zheng ZY; Wu JR; Gao MJ; Lin CC
    Bioresour Technol; 2014 Jan; 151():120-7. PubMed ID: 24215768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of mannitol production by Lactobacillus brevis mutant 3-A5 based on dual-stage pH control and fed-batch fermentations.
    Yue M; Cao H; Zhang J; Li S; Meng Y; Chen W; Huang L; Du Y
    World J Microbiol Biotechnol; 2013 Oct; 29(10):1923-30. PubMed ID: 23624845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant
    Abdella A; Segato F; Wilkins MR
    Biotechnol Rep (Amst); 2020 Jun; 26():e00457. PubMed ID: 32420050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy].
    Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective and simplified fed-batch strategy for improved 2,3-butanediol production by Klebsiella oxytoca.
    Nie ZK; Ji XJ; Huang H; Du J; Li ZY; Qu L; Zhang Q; Ouyang PK
    Appl Biochem Biotechnol; 2011 Apr; 163(8):946-53. PubMed ID: 20938754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis and pH-shift control strategy for propionic acid production with Propionibacterium Freudenreichii CCTCC M207015.
    Feng X; Xu H; Yao J; Li S; Zhu H; Ouyang P
    Appl Biochem Biotechnol; 2010 Jan; 160(2):343-9. PubMed ID: 18626579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses.
    Unrean P; Nguyen NH
    Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.