These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30944802)

  • 41.
    Wu T; Xu J; Xie W; Yao Z; Yang H; Sun C; Li X
    Front Microbiol; 2018; 9():1087. PubMed ID: 29887849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Pollution Characteristics and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Surface Soils of a Large Steel enterprise in the North of China].
    Dong J; Huang Y; Li YX; Zhang HY; Gao FW
    Huan Jing Ke Xue; 2016 Sep; 37(9):3540-3546. PubMed ID: 29964791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil.
    Liste HH; Prutz I
    Chemosphere; 2006 Mar; 62(9):1411-20. PubMed ID: 15996713
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil.
    Zeng J; Lin X; Zhang J; Li X
    J Hazard Mater; 2010 Nov; 183(1-3):718-23. PubMed ID: 20724073
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioremediation on a chip: A portable microfluidic device for efficient screening of bacterial biofilm with polycyclic aromatic hydrocarbon removal capacity.
    Bourguignon N; Alessandrello M; Booth R; Lobo CB; Juárez Tomás MS; Cumbal L; Perez M; Bhansali S; Ferrero M; Lerner B
    Chemosphere; 2022 Sep; 303(Pt 2):135001. PubMed ID: 35605730
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities.
    Toledo FL; Calvo C; Rodelas B; González-López J
    Syst Appl Microbiol; 2006 Apr; 29(3):244-52. PubMed ID: 16564960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of polycyclic aromatic hydrocarbon contamination in the Sundarbans, the world's largest tidal mangrove forest and indigenous microbial mixed biofilm-based removal of the contaminants.
    Balu S; Bhunia S; Gachhui R; Mukherjee J
    Environ Pollut; 2020 Nov; 266(Pt 1):115270. PubMed ID: 32798981
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil.
    Nam K; Kukor JJ
    Biodegradation; 2000; 11(1):1-9. PubMed ID: 11194968
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Occupational exposure to aromatic hydrocarbons and polycyclic aromatic hydrocarbons at a coke plant.
    Bieniek G; Łusiak A
    Ann Occup Hyg; 2012 Aug; 56(7):796-807. PubMed ID: 22539560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dearomatization of diesel oil using Pseudomonas sp.
    Khan S; Gupta S; Gupta N
    Biotechnol Lett; 2018 Oct; 40(9-10):1329-1333. PubMed ID: 29802569
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria.
    Mehetre GT; Dastager SG; Dharne MS
    Sci Total Environ; 2019 Aug; 679():52-60. PubMed ID: 31082602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The development of solid-surface fluorescence characterization of polycyclic aromatic hydrocarbons for potential screening tests in environmental samples.
    Fernández-Sánchez JF; Segura Carretero A; Cruces-Blanco C; Fernández-Gutiérrez A
    Talanta; 2003 Jun; 60(2-3):287-93. PubMed ID: 18969051
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    Jiang Y; Huang H; Wu M; Yu X; Chen Y; Liu P; Li X
    Biophys Rep; 2015; 1():156-167. PubMed ID: 27340693
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.
    Wang C; Wang Z; Li Z; Ahmad R
    Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradation of Diesel, Crude Oil and Spent Lubricating Oil by Soil Isolates of Bacillus spp.
    Raju MN; Leo R; Herminia SS; Morán RE; Venkateswarlu K; Laura S
    Bull Environ Contam Toxicol; 2017 May; 98(5):698-705. PubMed ID: 28210752
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mangrove's rhizospheric engineering with bacterial inoculation improve degradation of diesel contamination.
    Khan AL; Numan M; Bilal S; Asaf S; Crafword K; Imran M; Al-Harrasi A; Al-Sabahi JN; Rehman NU; A-Rawahi A; Lee IJ
    J Hazard Mater; 2022 Feb; 423(Pt A):127046. PubMed ID: 34481398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Diesel Degrading Indigenous Bacterial Strains,
    Dohare S; Rawat HK; Bhargava Y; Kango N
    Indian J Microbiol; 2024 Jun; 64(2):749-757. PubMed ID: 39011005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L.
    Marchut-Mikolajczyk O; Drożdżyński P; Pietrzyk D; Antczak T
    Microb Cell Fact; 2018 Nov; 17(1):171. PubMed ID: 30390702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diesel degrading bacterial endophytes with plant growth promoting potential isolated from a petroleum storage facility.
    Iqbal A; Arshad M; Karthikeyan R; Gentry TJ; Rashid J; Ahmed I; Schwab AP
    3 Biotech; 2019 Jan; 9(1):35. PubMed ID: 30622873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors.
    Guieysse B; Viklund G
    Chemosphere; 2005 Apr; 59(3):369-76. PubMed ID: 15763089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.