These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30945216)

  • 1. Information-Theoretic Inference of an Optimal Dictionary of Protein Supersecondary Structures.
    Konagurthu AS; Subramanian R; Allison L; Abramson D; de la Banda MG; Stuckey PJ; Lesk AM
    Methods Mol Biol; 2019; 1958():123-131. PubMed ID: 30945216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical inference of protein structural alignments using information and compression.
    Collier JH; Allison L; Lesk AM; Stuckey PJ; Garcia de la Banda M; Konagurthu AS
    Bioinformatics; 2017 Apr; 33(7):1005-1013. PubMed ID: 28065899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure description and identification using the tableau representation of protein folding patterns.
    Konagurthu AS; Lesk AM
    Methods Mol Biol; 2013; 932():51-9. PubMed ID: 22987346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new statistical framework to assess structural alignment quality using information compression.
    Collier JH; Allison L; Lesk AM; Garcia de la Banda M; Konagurthu AS
    Bioinformatics; 2014 Sep; 30(17):i512-8. PubMed ID: 25161241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal Architectural Concepts Underlying Protein Folding Patterns.
    Konagurthu AS; Subramanian R; Allison L; Abramson D; Stuckey PJ; Garcia de la Banda M; Lesk AM
    Front Mol Biosci; 2020; 7():612920. PubMed ID: 33996891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences.
    Oldfield CJ; Chen K; Kurgan L
    Methods Mol Biol; 2019; 1958():73-100. PubMed ID: 30945214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical compression of protein sequences and inference of marginal probability landscapes over competing alignments using finite state models and Dirichlet priors.
    Sumanaweera D; Allison L; Konagurthu AS
    Bioinformatics; 2019 Jul; 35(14):i360-i369. PubMed ID: 31510703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility.
    Pires DEV; Rodrigues CHM; Albanaz ATS; Karmakar M; Myung Y; Xavier J; Michanetzi EM; Portelli S; Ascher DB
    Methods Mol Biol; 2019; 1958():173-185. PubMed ID: 30945219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piecewise linear approximation of protein structures using the principle of minimum message length.
    Konagurthu AS; Allison L; Stuckey PJ; Lesk AM
    Bioinformatics; 2011 Jul; 27(13):i43-51. PubMed ID: 21685100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum message length inference of secondary structure from protein coordinate data.
    Konagurthu AS; Lesk AM; Allison L
    Bioinformatics; 2012 Jun; 28(12):i97-105. PubMed ID: 22689785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supersecondary structure prediction of transmembrane beta-barrel proteins.
    Tran Vdu T; Chassignet P; Steyaert JM
    Methods Mol Biol; 2013; 932():277-94. PubMed ID: 22987359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity.
    Youkharibache P
    Methods Mol Biol; 2019; 1958():187-219. PubMed ID: 30945220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A survey of machine learning methods for secondary and supersecondary protein structure prediction.
    Ho HK; Zhang L; Ramamohanarao K; Martin S
    Methods Mol Biol; 2013; 932():87-106. PubMed ID: 22987348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.
    Sborgi L; Verma A; Sadqi M; de Alba E; Muñoz V
    Methods Mol Biol; 2013; 932():205-18. PubMed ID: 22987355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation.
    Gerstman BS; Chapagain PP
    Methods Mol Biol; 2013; 932():191-204. PubMed ID: 22987354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence Pattern for Supersecondary Structure of Sandwich-Like Proteins.
    Kister AE
    Methods Mol Biol; 2019; 1958():313-327. PubMed ID: 30945226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology Searches Using Supersecondary Structure Code.
    Izumi H
    Methods Mol Biol; 2019; 1958():329-340. PubMed ID: 30945227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Representing Protein Folding Patterns Using Non-Linear Parametric Curves.
    Kasarapu P; de la Banda MG; Konagurthu AS
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1218-28. PubMed ID: 26357057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Approaches in Supersecondary Structures Investigation.
    Rudnev VR; Kulikova LI; Nikolsky KS; Malsagova KA; Kopylov AT; Kaysheva AL
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.
    Kinjo AR; Nakamura H
    Methods Mol Biol; 2013; 932():295-315. PubMed ID: 22987360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.