BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30945218)

  • 1. Learning Organizations of Protein Energy Landscapes: An Application on Decoy Selection in Template-Free Protein Structure Prediction.
    Akhter N; Hassan L; Rajabi Z; Barbará D; Shehu A
    Methods Mol Biol; 2019; 1958():147-171. PubMed ID: 30945218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction.
    Akhter N; Shehu A
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29351266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoy selection for protein structure prediction via extreme gradient boosting and ranking.
    Akhter N; Chennupati G; Djidjev H; Shehu A
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):189. PubMed ID: 33297949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised and Supervised Learning over theEnergy Landscape for Protein Decoy Selection.
    Akhter N; Chennupati G; Kabir KL; Djidjev H; Shehu A
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31615116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing energy landscape maps and structural excursions of proteins.
    Sapin E; Carr DB; De Jong KA; Shehu A
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):546. PubMed ID: 27535545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph-Based Community Detection for Decoy Selection in Template-Free Protein Structure Prediction.
    Kabir KL; Hassan L; Rajabi Z; Akhter N; Shehu A
    Molecules; 2019 Feb; 24(5):. PubMed ID: 30823390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction.
    Zaman AB; Shehu A
    BMC Bioinformatics; 2019 Apr; 20(1):211. PubMed ID: 31023237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From mutations to mechanisms and dysfunction via computation and mining of protein energy landscapes.
    Qiao W; Akhter N; Fang X; Maximova T; Plaku E; Shehu A
    BMC Genomics; 2018 Sep; 19(Suppl 7):671. PubMed ID: 30255791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building maps of protein structure spaces in template-free protein structure prediction.
    Zaman AB; Shehu A
    J Bioinform Comput Biol; 2019 Dec; 17(6):1940013. PubMed ID: 32019408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
    Saleh S; Olson B; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S4. PubMed ID: 24565020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuating dependence on structural data in computing protein energy landscapes.
    Morris D; Maximova T; Plaku E; Shehu A
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):280. PubMed ID: 31167640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles, challenges and advances in ab initio protein structure prediction.
    Jothi A
    Protein Pept Lett; 2012 Nov; 19(11):1194-204. PubMed ID: 22587787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sDFIRE: Sequence-specific statistical energy function for protein structure prediction by decoy selections.
    Hoque MT; Yang Y; Mishra A; Zhou Y
    J Comput Chem; 2016 May; 37(12):1119-24. PubMed ID: 26849026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Optimization to Mapping: An Evolutionary Algorithm for Protein Energy Landscapes.
    Sapin E; De Jong KA; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):719-731. PubMed ID: 28113951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Data-Driven Evolutionary Algorithm for Mapping Multibasin Protein Energy Landscapes.
    Clausen R; Shehu A
    J Comput Biol; 2015 Sep; 22(9):844-60. PubMed ID: 26203626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling.
    Wang C; Wei Y; Zhang H; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):135. PubMed ID: 30925867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding funnels: the key to robust protein structure prediction.
    Hardin C; Eastwood MP; Prentiss M; Luthey-Schulten Z; Wolynes PG
    J Comput Chem; 2002 Jan; 23(1):138-46. PubMed ID: 11913379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A decoy set for the thermostable subdomain from chicken villin headpiece, comparison of different free energy estimators.
    Fogolari F; Tosatto SC; Colombo G
    BMC Bioinformatics; 2005 Dec; 6():301. PubMed ID: 16354298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Protein Decoy Selection via Non-Negative Matrix Factorization.
    Akhter N; Kabir KL; Chennupati G; Vangara R; Alexandrov BS; Djidjev H; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1670-1682. PubMed ID: 33400654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.