These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 3094522)

  • 1. Acetylcholine receptor dimers are stabilized by extracellular disulfide bonding.
    Dunn SM; Conti-Tronconi BM; Raftery MA
    Biochem Biophys Res Commun; 1986 Sep; 139(2):830-7. PubMed ID: 3094522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional stability of Torpedo acetylcholine receptor. Effects of protease treatment.
    Conti-Tronconi BM; Dunn SM; Raftery MA
    Biochemistry; 1982 Mar; 21(5):893-9. PubMed ID: 6280756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine receptor channel gating and conductance involve extracellular disulfide bond(s).
    Rojas L; Zuazaga C; Steinacker A
    Brain Res; 1991 Jun; 551(1-2):10-5. PubMed ID: 1913141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues.
    Kao PN; Karlin A
    J Biol Chem; 1986 Jun; 261(18):8085-8. PubMed ID: 3722144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three possible disulfides in the acetylcholine receptor alpha-subunit.
    Mosckovitz R; Gershoni JM
    J Biol Chem; 1988 Jan; 263(2):1017-22. PubMed ID: 3121617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide bond cross-linked dimer in acetylcholine receptor from Torpedo californica.
    Hamilton SL; McLaughlin M; Karlin A
    Biochem Biophys Res Commun; 1977 Dec; 79(3):692-9. PubMed ID: 597297
    [No Abstract]   [Full Text] [Related]  

  • 7. Nicotinic postsynaptic membranes from Torpedo: sidedness, permeability to macromolecules, and topography of major polypeptides.
    St John PA; Froehner SC; Goodenough DA; Cohen JB
    J Cell Biol; 1982 Feb; 92(2):333-42. PubMed ID: 6174528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic conservation of disulfide-linked, dimeric acetylcholine receptor pentamers in southern ocean electric rays.
    Tierney ML; Osborn KE; Milburn PJ; Stowell MH; Howitt SM
    J Exp Biol; 2004 Sep; 207(Pt 20):3581-90. PubMed ID: 15339954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [3H]acetylcholine binding sites in brain. Effect of disulfide bond modification.
    Schwartz RD; Kellar KJ
    Mol Pharmacol; 1983 Nov; 24(3):387-91. PubMed ID: 6633505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intramolecular disulfide bond between conserved extracellular cysteines in the gonadotropin-releasing hormone receptor is essential for binding and activation.
    Cook JV; Eidne KA
    Endocrinology; 1997 Jul; 138(7):2800-6. PubMed ID: 9202220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of anti-acetylcholine receptor antibodies inhibits the acetylcholine receptor mediated cation flux.
    Gonzalez-Ros JM; Ferragut JA; Martinez-Carrion M
    Biochem Biophys Res Commun; 1984 Apr; 120(2):368-75. PubMed ID: 6203520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Raman spectroscopic study of acetylcholine receptor-rich membranes from Torpedo marmorata. Interaction of the receptor with carbamylcholine and (+)-tubocurarine.
    Aslanian D; Grof P; Galzi JL; Changeux JP
    Biochim Biophys Acta; 1993 Jun; 1148(2):291-302. PubMed ID: 8504123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization and synthesis of the acetylcholine-binding site in the alpha-chain of the Torpedo californica acetylcholine receptor.
    McCormick DJ; Atassi MZ
    Biochem J; 1984 Dec; 224(3):995-1000. PubMed ID: 6525183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of acetylcholine receptor dimers to monomers upon depletion of non-receptor peripheral proteins.
    Criado M; Barrantes FJ
    Biochim Biophys Acta; 1984 Apr; 798(3):374-81. PubMed ID: 6324880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profile of the alpha-bungarotoxin-binding regions on the extracellular part of the alpha-chain of Torpedo californica acetylcholine receptor.
    Mulac-Jericevic B; Atassi MZ
    Biochem J; 1987 Dec; 248(3):847-52. PubMed ID: 3435488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine receptor from Torpedo. Preferential solubilization and efficient reintegration into lipid vesicles.
    Paraschos A; Gonzalez-Ros JM; Martinez-Carrion M
    Biochim Biophys Acta; 1982 Oct; 691(2):249-60. PubMed ID: 7138859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity and localization of the acetylcholine receptor kinase.
    Davis CG; Gordon AS; Diamond I
    Proc Natl Acad Sci U S A; 1982 Jun; 79(11):3666-70. PubMed ID: 6954509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a disulfide between cysteine 214 and cysteine 277 in the beta subunit of native (Na+ + K+)ATPase.
    Kellaris KV
    Biochem Biophys Res Commun; 1989 Jul; 162(1):64-70. PubMed ID: 2546555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two pools of cholesterol in acetylcholine receptor-rich membranes from Torpedo.
    Leibel WS; Firestone LL; Legler DC; Braswell LM; Miller KW
    Biochim Biophys Acta; 1987 Feb; 897(2):249-60. PubMed ID: 2434127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the cysteine residues involved in the class I disulfide bonds of the human insulin receptor: properties of insulin receptor monomers.
    Lu K; Guidotti G
    Mol Biol Cell; 1996 May; 7(5):679-91. PubMed ID: 8744943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.