These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 30945220)
21. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation. Gerstman BS; Chapagain PP Methods Mol Biol; 2013; 932():191-204. PubMed ID: 22987354 [TBL] [Abstract][Full Text] [Related]
22. How a spatial arrangement of secondary structure elements is dispersed in the universe of protein folds. Minami S; Sawada K; Chikenji G PLoS One; 2014; 9(9):e107959. PubMed ID: 25243952 [TBL] [Abstract][Full Text] [Related]
23. Systematic detection of internal symmetry in proteins using CE-Symm. Myers-Turnbull D; Bliven SE; Rose PW; Aziz ZK; Youkharibache P; Bourne PE; Prlić A J Mol Biol; 2014 May; 426(11):2255-68. PubMed ID: 24681267 [TBL] [Abstract][Full Text] [Related]
27. A structure filter for the Eukaryotic Linear Motif Resource. Via A; Gould CM; Gemünd C; Gibson TJ; Helmer-Citterich M BMC Bioinformatics; 2009 Oct; 10():351. PubMed ID: 19852836 [TBL] [Abstract][Full Text] [Related]
28. Supersecondary structure prediction using Chou's pseudo amino acid composition. Zou D; He Z; He J; Xia Y J Comput Chem; 2011 Jan; 32(2):271-8. PubMed ID: 20652881 [TBL] [Abstract][Full Text] [Related]
29. Detection of gene duplication signals of Ig folds from their amino acid sequences. Huang Y; Xiao Y Proteins; 2007 Jul; 68(1):267-72. PubMed ID: 17427227 [TBL] [Abstract][Full Text] [Related]
30. New classification of supersecondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage. Chiang YS; Gelfand TI; Kister AE; Gelfand IM Proteins; 2007 Sep; 68(4):915-21. PubMed ID: 17557333 [TBL] [Abstract][Full Text] [Related]
31. Beyond supersecondary structure: the global properties of protein sequences. Rackovsky S Methods Mol Biol; 2013; 932():107-14. PubMed ID: 22987349 [TBL] [Abstract][Full Text] [Related]
34. Prediction of protein supersecondary structures based on the artificial neural network method. Sun Z; Rao X; Peng L; Xu D Protein Eng; 1997 Jul; 10(7):763-9. PubMed ID: 9342142 [TBL] [Abstract][Full Text] [Related]
35. The GD box: a widespread noncontiguous supersecondary structural element. Alva V; Dunin-Horkawicz S; Habeck M; Coles M; Lupas AN Protein Sci; 2009 Sep; 18(9):1961-6. PubMed ID: 19609930 [TBL] [Abstract][Full Text] [Related]
36. Computer simulations aimed at structure prediction of supersecondary motifs in proteins. Forcellino F; Derreumaux P Proteins; 2001 Nov; 45(2):159-66. PubMed ID: 11562945 [TBL] [Abstract][Full Text] [Related]
37. Overview of protein structural and functional folds. Sun PD; Foster CE; Boyington JC Curr Protoc Protein Sci; 2004 May; Chapter 17(1):Unit 17.1. PubMed ID: 18429251 [TBL] [Abstract][Full Text] [Related]
38. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains. Garcia TI; Oberhauser AF; Braun W Proteins; 2009 May; 75(3):706-18. PubMed ID: 19003986 [TBL] [Abstract][Full Text] [Related]
39. TOPS: an enhanced database of protein structural topology. Michalopoulos I; Torrance GM; Gilbert DR; Westhead DR Nucleic Acids Res; 2004 Jan; 32(Database issue):D251-4. PubMed ID: 14681405 [TBL] [Abstract][Full Text] [Related]
40. Exploring symmetry as an avenue to the computational design of large protein domains. Fortenberry C; Bowman EA; Proffitt W; Dorr B; Combs S; Harp J; Mizoue L; Meiler J J Am Chem Soc; 2011 Nov; 133(45):18026-9. PubMed ID: 21978247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]