These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30945222)

  • 1. Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization.
    Fernández MR; Pallarès I; Iglesias V; Santos J; Ventura S
    Methods Mol Biol; 2019; 1958():237-261. PubMed ID: 30945222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Soft Amyloid Cores in Human Prion-Like Proteins.
    Batlle C; de Groot NS; Iglesias V; Navarro S; Ventura S
    Sci Rep; 2017 Sep; 7(1):12134. PubMed ID: 28935930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfecting prediction of mutational impact on the aggregation propensity of the ALS-associated hnRNPA2 prion-like protein.
    Batlle C; Fernández MR; Iglesias V; Ventura S
    FEBS Lett; 2017 Jul; 591(13):1966-1971. PubMed ID: 28542905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance.
    Duernberger Y; Liu S; Riemschoss K; Paulsen L; Bester R; Kuhn PH; Schölling M; Lichtenthaler SF; Vorberg I
    Mol Cell Biol; 2018 Aug; 38(15):. PubMed ID: 29784771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Prions to Stress Granules: Defining the Compositional Features of Prion-Like Domains That Promote Different Types of Assemblies.
    Fomicheva A; Ross ED
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33513942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural and pathogenic protein sequence variation affecting prion-like domains within and across human proteomes.
    Cascarina SM; Ross ED
    BMC Genomics; 2020 Jan; 21(1):23. PubMed ID: 31914925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMYCO: evaluation of mutational impact on prion-like proteins aggregation propensity.
    Iglesias V; Conchillo-Sole O; Batlle C; Ventura S
    BMC Bioinformatics; 2019 Jan; 20(1):24. PubMed ID: 30642249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases.
    Chen C; Ding X; Akram N; Xue S; Luo SZ
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31022909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation and degradation scales for prion-like domains: sequence features and context weigh in.
    Cascarina SM; Ross ED
    Curr Genet; 2019 Apr; 65(2):387-392. PubMed ID: 30310993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid cores in prion domains: Key regulators for prion conformational conversion.
    Fernández MR; Batlle C; Gil-García M; Ventura S
    Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation.
    Mishra R; Elgland M; Begum A; Fyrner T; Konradsson P; Nyström S; Hammarström P
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):909-921. PubMed ID: 30935958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeats are one of the main characteristics of RNA-binding proteins with prion-like domains.
    Galzitskaya OV
    Mol Biosyst; 2015 Aug; 11(8):2210-8. PubMed ID: 26022110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils.
    Singh J; Sabareesan AT; Mathew MK; Udgaonkar JB
    J Mol Biol; 2012 Oct; 423(2):217-31. PubMed ID: 22789566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins.
    Zhang Y; Man VH; Roland C; Sagui C
    ACS Chem Neurosci; 2016 May; 7(5):576-87. PubMed ID: 26911543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence and evolution of yeast prion and prion-like proteins.
    An L; Fitzpatrick D; Harrison PM
    BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.