These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 30945225)

  • 1. Molecular Dynamics Simulations of Conformational Conversions in Transformer Proteins.
    Gerstman BS; Chapagain PP; Gc J; Steckmann T
    Methods Mol Biol; 2019; 1958():297-311. PubMed ID: 30945225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdomain salt-bridges in the Ebola virus protein VP40 and their role in domain association and plasma membrane localization.
    Gc JB; Johnson KA; Husby ML; Frick CT; Gerstman BS; Stahelin RV; Chapagain PP
    Protein Sci; 2016 Sep; 25(9):1648-58. PubMed ID: 27328459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Approaches in Supersecondary Structures Investigation.
    Rudnev VR; Kulikova LI; Nikolsky KS; Malsagova KA; Kopylov AT; Kaysheva AL
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond Supersecondary Structure: Physics-Based Sequence Alignment.
    Rackovsky S
    Methods Mol Biol; 2019; 1958():341-346. PubMed ID: 30945228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences.
    Oldfield CJ; Chen K; Kurgan L
    Methods Mol Biol; 2019; 1958():73-100. PubMed ID: 30945214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-active site mutations disturb the loop dynamics, dimerization, viral budding and egress of VP40 of the Ebola virus.
    Balmith M; Soliman ME
    Mol Biosyst; 2017 Feb; 13(3):585-597. PubMed ID: 28170013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. StackSSSPred: A Stacking-Based Prediction of Supersecondary Structure from Sequence.
    Flot M; Mishra A; Kuchi AS; Hoque MT
    Methods Mol Biol; 2019; 1958():101-122. PubMed ID: 30945215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural conversion of the transformer protein RfaH: new insights derived from protein structure prediction and molecular dynamics simulations.
    Balasco N; Barone D; Vitagliano L
    J Biomol Struct Dyn; 2015; 33(10):2173-9. PubMed ID: 25483894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology Searches Using Supersecondary Structure Code.
    Izumi H
    Methods Mol Biol; 2019; 1958():329-340. PubMed ID: 30945227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility.
    Pires DEV; Rodrigues CHM; Albanaz ATS; Karmakar M; Myung Y; Xavier J; Michanetzi EM; Portelli S; Ascher DB
    Methods Mol Biol; 2019; 1958():173-185. PubMed ID: 30945219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation.
    Gerstman BS; Chapagain PP
    Methods Mol Biol; 2013; 932():191-204. PubMed ID: 22987354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence Pattern for Supersecondary Structure of Sandwich-Like Proteins.
    Kister AE
    Methods Mol Biol; 2019; 1958():313-327. PubMed ID: 30945226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VP40 of the Ebola Virus as a Target for EboV Therapy: Comprehensive Conformational and Inhibitor Binding Landscape from Accelerated Molecular Dynamics.
    Balmith M; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):65-78. PubMed ID: 28144904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A survey of machine learning methods for secondary and supersecondary protein structure prediction.
    Ho HK; Zhang L; Ramamohanarao K; Martin S
    Methods Mol Biol; 2013; 932():87-106. PubMed ID: 22987348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current updates on computer aided protein modeling and designing.
    Khan FI; Wei DQ; Gu KR; Hassan MI; Tabrez S
    Int J Biol Macromol; 2016 Apr; 85():48-62. PubMed ID: 26730484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction of secondary and supersecondary structures.
    Chen K; Kurgan L
    Methods Mol Biol; 2013; 932():63-86. PubMed ID: 22987347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein structure refinement with adaptively restrained homologous replicas.
    Della Corte D; Wildberg A; Schröder GF
    Proteins; 2016 Sep; 84 Suppl 1():302-13. PubMed ID: 26441154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond supersecondary structure: the global properties of protein sequences.
    Rackovsky S
    Methods Mol Biol; 2013; 932():107-14. PubMed ID: 22987349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting transitions in protein dynamics using a recurrence quantification analysis based bootstrap method.
    Karain WI
    BMC Bioinformatics; 2017 Nov; 18(1):525. PubMed ID: 29179670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of CXCL-8 and its interactions with a receptor peptide, heparin fragments, and sulfated linked cyclitols.
    Gandhi NS; Mancera RL
    J Chem Inf Model; 2011 Feb; 51(2):335-58. PubMed ID: 21299226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.