These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 3094539)

  • 1. 2,5,2',5'-Tetrachlorobiphenyl impairs the bioenergetic functions of isolated rat liver mitochondria.
    Nishihara Y; Utsumi K
    Biochem Pharmacol; 1986 Oct; 35(19):3335-9. PubMed ID: 3094539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of the effects of biphenyl and Kanechlor-400 on the respiratory and energy linked activities of rat liver mitochondria.
    Nishihara Y
    Br J Ind Med; 1985 Feb; 42(2):128-32. PubMed ID: 3918562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative toxicity of 4-chlorobiphenyl and its metabolite 4-chloro-4'-biphenylol in isolated rat liver mitochondria.
    Nishihara Y
    Biochem Pharmacol; 1988 Aug; 37(15):2915-26. PubMed ID: 2969244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of piperine on bioenergetic functions of isolated rat liver mitochondria.
    Reanmongkol W; Janthasoot W; Wattanatorn W; Dhumma-Upakorn P; Chudapongse P
    Biochem Pharmacol; 1988 Feb; 37(4):753-7. PubMed ID: 2963641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halothane impairs the bioenergetic functions of isolated rat liver mitochondria.
    Tsuchiya M; Takahashi M; Tomoda M; Ueda W; Hirakawa M
    Toxicol Appl Pharmacol; 1990 Jul; 104(3):466-75. PubMed ID: 2166974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of piperine on enzyme activities and bioenergetic functions in isolated rat liver mitochondria and hepatocytes.
    Jamwal DS; Singh J
    J Biochem Toxicol; 1993 Dec; 8(4):167-74. PubMed ID: 8114060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cresols (o-, m-, and p-isomers) on the bioenergetic system in isolated rat liver mitochondria.
    Kitagawa A
    Drug Chem Toxicol; 2001 Feb; 24(1):39-47. PubMed ID: 11307633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of equisetin on rat liver mitochondria: evidence for inhibition of substrate anion carriers of the inner membrane.
    König T; Kapus A; Sarkadi B
    J Bioenerg Biomembr; 1993 Oct; 25(5):537-45. PubMed ID: 8132493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate.
    Guidoux R
    Arch Biochem Biophys; 1991 Jun; 287(2):397-402. PubMed ID: 1898011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tl+ induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate.
    Korotkov SM; Emelyanova LV; Konovalova SA; Brailovskaya IV
    Toxicol In Vitro; 2015 Aug; 29(5):1034-41. PubMed ID: 25910914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple effects of 2,2',5,5'-tetrachlorobiphenyl on oxidative phosphorylation in rat liver mitochondria.
    Mildaziene V; Nauciene Z; Baniene R; Grigiene J
    Toxicol Sci; 2002 Feb; 65(2):220-7. PubMed ID: 11812926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment.
    Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS
    Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ; Fox DA
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):309-21. PubMed ID: 8171438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucagon stimulation of mitochondrial respiration.
    Yamazaki RK
    J Biol Chem; 1975 Oct; 250(19):7924-30. PubMed ID: 240844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alloxan effects on mitochondria: study of oxygen consumption, fluxes of Mg2+, Ca2+, K+ and adenine nucleotides, membrane potential and volume change in vitro.
    Boquist L
    Diabetologia; 1984 Sep; 27(3):379-86. PubMed ID: 6500198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Submicromolar Ca2+ regulates phosphorylating respiration by normal rat liver and AS-30D hepatoma mitochondria by different mechanisms.
    Murphy AN; Kelleher JK; Fiskum G
    J Biol Chem; 1990 Jun; 265(18):10527-34. PubMed ID: 2113059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of acute cytotoxicity of triethylphosphine gold(I) complexes. II. Triethylphosphine gold chloride-induced alterations in mitochondrial function.
    Rush GF; Smith PF; Hoke GD; Alberts DW; Snyder RM; Mirabelli CK
    Toxicol Appl Pharmacol; 1987 Sep; 90(3):391-400. PubMed ID: 3660409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.