BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30945474)

  • 21. The control of cargo release from physically crosslinked hydrogels by crosslink dynamics.
    Appel EA; Forster RA; Rowland MJ; Scherman OA
    Biomaterials; 2014 Dec; 35(37):9897-9903. PubMed ID: 25239043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Responsive biomimetic networks from polyisocyanopeptide hydrogels.
    Kouwer PH; Koepf M; Le Sage VA; Jaspers M; van Buul AM; Eksteen-Akeroyd ZH; Woltinge T; Schwartz E; Kitto HJ; Hoogenboom R; Picken SJ; Nolte RJ; Mendes E; Rowan AE
    Nature; 2013 Jan; 493(7434):651-5. PubMed ID: 23354048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering.
    Koivisto JT; Joki T; Parraga JE; Pääkkönen R; Ylä-Outinen L; Salonen L; Jönkkäri I; Peltola M; Ihalainen TO; Narkilahti S; Kellomäki M
    Biomed Mater; 2017 Mar; 12(2):025014. PubMed ID: 28233757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoscale characterization of supramolecular transient networks using SAXS and rheology.
    Pape AC; Bastings MM; Kieltyka RE; Wyss HM; Voets IK; Meijer EW; Dankers PY
    Int J Mol Sci; 2014 Jan; 15(1):1096-111. PubMed ID: 24441567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in bioactive hydrogels to probe and direct cell fate.
    DeForest CA; Anseth KS
    Annu Rev Chem Biomol Eng; 2012; 3():421-44. PubMed ID: 22524507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Injectable and Self-Healing Dynamic Hydrogels Based on Metal(I)-Thiolate/Disulfide Exchange as Biomaterials with Tunable Mechanical Properties.
    Casuso P; Odriozola I; Pérez-San Vicente A; Loinaz I; Cabañero G; Grande HJ; Dupin D
    Biomacromolecules; 2015 Nov; 16(11):3552-61. PubMed ID: 26418440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cucurbit[7]uril: A simple macrocyclic, pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior.
    Hwang I; Jeon WS; Kim HJ; Kim D; Kim H; Selvapalam N; Fujita N; Shinkai S; Kim K
    Angew Chem Int Ed Engl; 2007; 46(1-2):210-3. PubMed ID: 17094150
    [No Abstract]   [Full Text] [Related]  

  • 29. Cucurbit[7]uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions.
    Zheng YC; Zhao YY; Zheng ML; Chen SL; Liu J; Jin F; Dong XZ; Zhao ZS; Duan XM
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1782-1789. PubMed ID: 30608644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical characterization of soft biomaterials: which time and spatial scale to choose?
    Krivega ES; Kotova SL; Timashev PS; Efremov YM
    Soft Matter; 2024 Jul; 20(26):5095-5104. PubMed ID: 38888165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.
    Truong VX; Hun ML; Li F; Chidgey AP; Forsythe JS
    Biomater Sci; 2016 Jul; 4(7):1123-31. PubMed ID: 27217071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A minimalistic catalytically-active cell mimetic made of a supra-molecular hydrogel encapsulated into a polymersome.
    Martí-Centelles R; Rubio-Magnieto J; Escuder B
    Chem Commun (Camb); 2020 Nov; 56(92):14487-14490. PubMed ID: 33150884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.
    Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY
    Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.
    Kocen R; Gasik M; Gantar A; Novak S
    Biomed Mater; 2017 Mar; 12(2):025004. PubMed ID: 28106535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Injectable and photocross-linkable gels based on gellan gum methacrylate: a new tool for biomedical application.
    Pacelli S; Paolicelli P; Dreesen I; Kobayashi S; Vitalone A; Casadei MA
    Int J Biol Macromol; 2015 Jan; 72():1335-42. PubMed ID: 25450552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanomimetic hydrogels for vocal fold lamina propria regeneration.
    Kutty JK; Webb K
    J Biomater Sci Polym Ed; 2009; 20(5-6):737-56. PubMed ID: 19323887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue.
    Feig VR; Tran H; Lee M; Bao Z
    Nat Commun; 2018 Jul; 9(1):2740. PubMed ID: 30013027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skin-Inspired Gels with Toughness, Antifreezing, Conductivity, and Remoldability.
    Chen H; Ren X; Gao G
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28336-28344. PubMed ID: 31304738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics.
    O'Neill SJK; Huang Z; Ahmed MH; Boys AJ; Velasco-Bosom S; Li J; Owens RM; McCune JA; Malliaras GG; Scherman OA
    Adv Mater; 2023 Jan; 35(1):e2207634. PubMed ID: 36314408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.