BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3094556)

  • 1. Inhibition studies of glucose-6-phosphate dehydrogenase from tetracycline-producing Streptomyces aureofaciens.
    Neuzil J; Novotná J; Bĕhal V; Hostálek Z
    Biotechnol Appl Biochem; 1986 Oct; 8(5):375-8. PubMed ID: 3094556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-6-phosphate dehydrogenase from a tetracycline producing strain of Streptomyces aureofaciens: some properties and regulatory aspects of the enzyme.
    Neuzil J; Novotná J; Erban V; Bĕhal V; Hostálek Z
    Biochem Int; 1988 Jul; 17(1):187-96. PubMed ID: 3142475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and properties of purified glucose-6-phosphate dehydrogenase from rat brain.
    Askar MA; Sumathy K; Baquer NZ
    Indian J Biochem Biophys; 1996 Dec; 33(6):512-8. PubMed ID: 9219438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular localization of enzymes in Streptomyces aureofaciens and its alteration by benzyl thiocyanate. II. Anhydrotetracycline oxygenase and glucose-6-phosphate dehydrogenase.
    Erban V; Trilisenko LV; Novotná J; Bĕhal V; Kulaev IS; Hostálek Z
    Folia Microbiol (Praha); 1987; 32(5):411-6. PubMed ID: 3121478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activities of the two thioredoxins from Streptomyces aureofaciens are not interchangeable.
    Horecká T; Perecko D; Kutejová E; Mikulásová D; Kollárová M
    J Basic Microbiol; 2003; 43(1):62-7. PubMed ID: 12596243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of Azotobacter vinelandii glucose-6-phosphate dehydrogenase: dual coenzyme specificity.
    Anderson BM; Anderson CD
    Arch Biochem Biophys; 1995 Aug; 321(1):94-100. PubMed ID: 7639541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Interdependence of mycelial dehydrogenase activity in Streptomyces aureofaciens and its capacity for tetracycline biosynthesis].
    Novikova LM; Makarevich VG
    Antibiotiki; 1984 Oct; 29(10):735-40. PubMed ID: 6439104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A further characterization of alanine dehydrogenase from Streptomyces aureofaciens.
    Vancurová I; Vancura A; Volc J; Neuzil J; Bĕhal V
    J Basic Microbiol; 1989; 29(3):185-9. PubMed ID: 2501471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of the NAD-preferring glucose 6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum).
    Ragunathan S; Levy HR
    Arch Biochem Biophys; 1994 May; 310(2):360-6. PubMed ID: 8179320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase.
    Gordon G; Mackow MC; Levy HR
    Arch Biochem Biophys; 1995 Apr; 318(1):25-9. PubMed ID: 7726568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipodascus magnusii (Saccharomycetes) contains multiple glucose-6-phosphate dehydrogenases with different NAD+/NADP+ dependencies.
    Králová B; Valentová O; Demnerová K; Silhánková L
    Microbiologia; 1996 Mar; 12(1):85-90. PubMed ID: 9019138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azotobacter vinelandii glucose 6-phosphate dehydrogenase properties of NAD- and NADP-linked reactions.
    Anderson BM; Wise DJ; Anderson CD
    Biochim Biophys Acta; 1997 Jul; 1340(2):268-76. PubMed ID: 9252113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vanadate dimer and tetramer both inhibit glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides.
    Crans DC; Schelble SM
    Biochemistry; 1990 Jul; 29(28):6698-706. PubMed ID: 2397207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of pyridine nucleotides and depletion of ATP and ADP during calcium- and inorganic phosphate-induced mitochondrial permeability transition.
    Savage MK; Reed DJ
    Biochem Biophys Res Commun; 1994 May; 200(3):1615-20. PubMed ID: 8185617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The possible role of high molecular weight polyphosphates in chlortetracycline biosynthesis by Streptomyces aureofaciens].
    Kulaev IS; Bobyk AM; Tobek I; Goshtialek Z
    Biokhimiia; 1976 Feb; 41(2):343-8. PubMed ID: 179612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic regulation of the glucose-6-phosphate dehydrogenase from Paracoccus denitrifcans grown on glucose/nitrate.
    Slabas AR; Whatley FR
    Arch Microbiol; 1977 Mar; 112(2):225-7. PubMed ID: 15531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control by phospho-adenosinediphospho-ribose of NADP-dependent isocitrate dehydrogenase and 6-phosphogluconate dehydrogenase in Streptomyces griseus.
    Gräfe U; Bormann EJ; Truckenbrodt G
    Z Allg Mikrobiol; 1980; 20(10):607-11. PubMed ID: 6784352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of adenine nucleotides and dehydroepiandrosterone on the isoenzymes of NADP + -and NAD + -glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from rat adipose tissue.
    Beitner R; Zwinaor
    Biochim Biophys Acta; 1972 Dec; 286(2):437-40. PubMed ID: 4349799
    [No Abstract]   [Full Text] [Related]  

  • 19. Protein profiles of Streptomyces aureofaciens producing tetracyclines: reappraisal of the effect of benzyl thiocyanate.
    Novotná J; Li XM; Novotná J; Vohradský J; Weiser J
    Curr Microbiol; 1995 Aug; 31(2):84-91. PubMed ID: 7606190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase.
    Zhang L; Ahvazi B; Szittner R; Vrielink A; Meighen E
    Biochemistry; 1999 Aug; 38(35):11440-7. PubMed ID: 10471295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.