These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30945762)
61. Microcurrent stimulation activates the circadian machinery in mice. Matsunaga N; Yoshida Y; Kitajou N; Shiraishi A; Kusunose N; Koyanagi S; Ohdo S Biochem Biophys Res Commun; 2019 May; 513(2):293-299. PubMed ID: 30944082 [TBL] [Abstract][Full Text] [Related]
62. Circadian regulation of c-MYC in mice. Liu Z; Selby CP; Yang Y; Lindsey-Boltz LA; Cao X; Eynullazada K; Sancar A Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21609-21617. PubMed ID: 32817420 [TBL] [Abstract][Full Text] [Related]
63. The duration of exposure to 50 Hz magnetic fields: Influence on circadian genes and DNA damage responses in murine hematopoietic FDC-P1 cells. Mustafa E; Luukkonen J; Makkonen J; Naarala J Mutat Res; 2021; 823():111756. PubMed ID: 34153743 [TBL] [Abstract][Full Text] [Related]
65. Differential roles for cryptochromes in the mammalian retinal clock. Wong JCY; Smyllie NJ; Banks GT; Pothecary CA; Barnard AR; Maywood ES; Jagannath A; Hughes S; van der Horst GTJ; MacLaren RE; Hankins MW; Hastings MH; Nolan PM; Foster RG; Peirson SN FASEB J; 2018 Aug; 32(8):4302-4314. PubMed ID: 29561690 [TBL] [Abstract][Full Text] [Related]
66. Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Mei L; Fan Y; Lv X; Welsh DK; Zhan C; Zhang EE Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4276-4281. PubMed ID: 29610316 [TBL] [Abstract][Full Text] [Related]
67. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Thresher RJ; Vitaterna MH; Miyamoto Y; Kazantsev A; Hsu DS; Petit C; Selby CP; Dawut L; Smithies O; Takahashi JS; Sancar A Science; 1998 Nov; 282(5393):1490-4. PubMed ID: 9822380 [TBL] [Abstract][Full Text] [Related]
68. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles. Yamanaka Y; Honma S; Honma K Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821 [TBL] [Abstract][Full Text] [Related]
69. Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Caldelas I; Poirel VJ; Sicard B; Pévet P; Challet E Neuroscience; 2003; 116(2):583-91. PubMed ID: 12559113 [TBL] [Abstract][Full Text] [Related]
70. Inborn differences in environmental reactivity predict divergent diurnal behavioral, endocrine, and gene expression rhythms. Kerman IA; Clinton SM; Simpson DN; Bedrosian TA; Bernard R; Akil H; Watson SJ Psychoneuroendocrinology; 2012 Feb; 37(2):256-69. PubMed ID: 21775066 [TBL] [Abstract][Full Text] [Related]
71. Role of heterozygous and homozygous alleles in cryptochrome-deficient mice. Oda Y; Takasu NN; Ohno SN; Shirakawa Y; Sugimura M; Nakamura TJ; Nakamura W Neurosci Lett; 2022 Feb; 772():136415. PubMed ID: 34954114 [TBL] [Abstract][Full Text] [Related]
72. Clock gene expression in mouse kidney and testis: analysis of periodical and dynamical patterns. Mazzoccoli G; Francavilla M; Giuliani F; Aucella F; Vinciguerra M; Pazienza V; Piepoli A; Benegiamo G; Liu S; Cai Y J Biol Regul Homeost Agents; 2012; 26(2):303-11. PubMed ID: 22824757 [TBL] [Abstract][Full Text] [Related]
73. Cryptochrome deficiency enhances transcription but reduces protein levels of pineal Aanat. Yamanaka Y; Yamada Y; Honma KI; Honma S J Mol Endocrinol; 2018 Oct; 61(4):219-229. PubMed ID: 30328353 [TBL] [Abstract][Full Text] [Related]
74. Expression and functional analyses of circadian genes in mouse oocytes and preimplantation embryos: Cry1 is involved in the meiotic process independently of circadian clock regulation. Amano T; Matsushita A; Hatanaka Y; Watanabe T; Oishi K; Ishida N; Anzai M; Mitani T; Kato H; Kishigami S; Saeki K; Hosoi Y; Iritani A; Matsumoto K Biol Reprod; 2009 Mar; 80(3):473-83. PubMed ID: 19020302 [TBL] [Abstract][Full Text] [Related]
75. Therapeutic Nuclear Magnetic Resonance affects the core clock mechanism and associated Hypoxia-inducible factor-1. Thöni V; Oliva R; Mauracher D; Egg M Chronobiol Int; 2021 Aug; 38(8):1120-1134. PubMed ID: 33847185 [TBL] [Abstract][Full Text] [Related]
76. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions. López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882 [TBL] [Abstract][Full Text] [Related]
78. Resetting process of peripheral circadian gene expression after the combined reversal of feeding schedule and light/dark cycle via a 24-h light period transition in rats. Wu T; Ni Y; Zhuge F; Fu Z Physiol Res; 2010; 59(4):581-590. PubMed ID: 19929146 [TBL] [Abstract][Full Text] [Related]
79. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Griffin EA; Staknis D; Weitz CJ Science; 1999 Oct; 286(5440):768-71. PubMed ID: 10531061 [TBL] [Abstract][Full Text] [Related]
80. Modulation by adiponectin of circadian clock rhythmicity in model mice for metabolic syndrome. Hashinaga T; Wada N; Otabe S; Yuan X; Kurita Y; Kakino S; Tanaka K; Sato T; Kojima M; Ohki T; Nakayama H; Egashira T; Tajiri Y; Yamada K Endocr J; 2013; 60(4):483-92. PubMed ID: 23292171 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]