These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30945842)

  • 1. High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes.
    Han C; Shi R; Zhou D; Li H; Xu L; Zhang T; Li J; Kang F; Wang G; Li B
    ACS Appl Mater Interfaces; 2019 May; 11(17):15646-15655. PubMed ID: 30945842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors.
    Zhang M; Zheng X; Mu J; Liu P; Yuan W; Li S; Wang X; Fang H; Liu H; Xing T; Hu H; Wu M
    Front Chem; 2021; 9():760473. PubMed ID: 34631673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors.
    Han C; Tong J; Tang X; Zhou D; Duan H; Li B; Wang G
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10479-10489. PubMed ID: 32049486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na
    Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudocapacitance of TiO
    Que LF; Yu FD; Wang ZB; Gu DM
    Small; 2018 Apr; 14(17):e1704508. PubMed ID: 29611299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation of Fe
    Li Y; Liang T; Wang R; He B; Gong Y; Wang H
    ACS Appl Mater Interfaces; 2019 May; 11(21):19115-19122. PubMed ID: 31062955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S, O dual-doped porous carbon derived from activation of waste papers as electrodes for high performance lithium ion capacitors.
    Hao J; Bai J; Wang X; Wang Y; Guo Q; Yang Y; Zhao J; Chi C; Li Y
    Nanoscale Adv; 2021 Feb; 3(3):738-746. PubMed ID: 36133845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors.
    Yu P; Cao G; Yi S; Zhang X; Li C; Sun X; Wang K; Ma Y
    Nanoscale; 2018 Mar; 10(13):5906-5913. PubMed ID: 29537043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors.
    Zhou J; Zhao H; Mu X; Chen J; Zhang P; Wang Y; He Y; Zhang Z; Pan X; Xie E
    Nanoscale; 2015 Sep; 7(35):14697-706. PubMed ID: 26280064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-energy flexible quasi-solid-state lithium-ion capacitors enabled by a freestanding rGO-encapsulated Fe
    Liang T; Wang H; Xu D; Liao K; Wang R; He B; Gong Y; Yan C
    Nanoscale; 2018 Sep; 10(37):17814-17823. PubMed ID: 30221261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
    Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All alginate-derived high-performance T-Nb
    Li M; Fang Y; Li J; Sun B; Du J; Liu Q; Zhang D
    RSC Adv; 2022 Feb; 12(10):5743-5748. PubMed ID: 35424551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Synthesis of Graphene with Fast Ion/Electron Channels for High-Performance Symmetric Lithium-Ion Capacitors.
    Xiao Y; Liu J; He D; Chen S; Peng W; Hu X; Liu T; Zhu Z; Bai Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38266-38277. PubMed ID: 34374273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidized-Polydopamine-Coated Graphene Anodes and N,P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors.
    Xiao Y; He D; Peng W; Chen S; Liu J; Chen H; Xin S; Bai Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10336-10348. PubMed ID: 33599127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.
    Sun F; Liu X; Wu HB; Wang L; Gao J; Li H; Lu Y
    Nano Lett; 2018 Jun; 18(6):3368-3376. PubMed ID: 29708761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Electrode Materials for Nonaqueous Lithium-Ion Capacitors.
    Xu J; Gao B; Huo KF; Chu PK
    J Nanosci Nanotechnol; 2020 May; 20(5):2652-2667. PubMed ID: 31635600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical architecture of ZIF-8@ZIF-67-Derived N-doped carbon nanotube hollow polyhedron supported on 2D Ti
    Wu W; Diwu J; Guo J; Fang Y; Wang L; Li C; Zhang B; Zhu J
    J Colloid Interface Sci; 2024 Jun; 663():609-623. PubMed ID: 38430831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Li-Ion and Na-Ion Capacitors Based on a Spinel Li
    Akshay M; Jyothilakshmi S; Lee YS; Aravindan V
    Small; 2024 Apr; 20(15):e2307248. PubMed ID: 37994396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes.
    Yin H; Tang J; Zhang K; Lin S; Xu G; Qin LC
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.