These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30945863)

  • 1. Competition/Cooperation between Humic Acid and Graphene Oxide in Uranyl Adsorption Implicated by Molecular Dynamics Simulations.
    Lan T; Liao J; Yang Y; Chai Z; Liu N; Wang D
    Environ Sci Technol; 2019 May; 53(9):5102-5110. PubMed ID: 30945863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigidity and Flexibility: Unraveling the Role of Fulvic Acid in Uranyl Sorption on Graphene Oxide Using Molecular Dynamics Simulations.
    Lan T; Wu P; Yin X; Zhao Y; Liao J; Wang D; Liu N
    Environ Sci Technol; 2023 Jul; 57(28):10339-10347. PubMed ID: 37399448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Humic Acid and Its Interaction with Uranyl in the Presence of Hydrophobic Surface Implicated by Molecular Dynamics Simulations.
    Lan T; Wang H; Liao J; Yang Y; Chai Z; Liu N; Wang D
    Environ Sci Technol; 2016 Oct; 50(20):11121-11128. PubMed ID: 27666876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid.
    Lu L; Wang J; Chen B
    Environ Pollut; 2018 Jan; 232():505-513. PubMed ID: 28988871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of adsorptive fractionation of humic acid on graphene oxide using fluorescence EEM-PARAFAC.
    Lee BM; Seo YS; Hur J
    Water Res; 2015 Apr; 73():242-51. PubMed ID: 25682051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Biolayer Interferometry, Atomic Force Microscopy, and Density Functional Theory Calculation Studies on the Affinity between Humic Acid Fractions and Graphene Oxide.
    Zhou Q; Ouyang S; Ao Z; Sun J; Liu G; Hu X
    Environ Sci Technol; 2019 Apr; 53(7):3773-3781. PubMed ID: 30865825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation in the toxicity of graphene oxide nanosheets towards Escherichia coli in the presence of humic acid.
    Zhang X; Sui M; Yan X; Huang T; Yuan Z
    Environ Sci Process Impacts; 2016 Jun; 18(6):744-50. PubMed ID: 27256116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution.
    Hartono T; Wang S; Ma Q; Zhu Z
    J Colloid Interface Sci; 2009 May; 333(1):114-9. PubMed ID: 19233379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Humic Acid with Graphene Oxide: Relation to Antibacterial Activities Against
    Yu H; Chu R; Li X; Wang B; Chen W; Zhou S; Chen H; Chen H; Wang M; Zheng L; Du W; Feng W
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1430-1438. PubMed ID: 33404405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insight into the Aggregation of Graphene Oxide Using Molecular Dynamics Simulations and Extended Derjaguin-Landau-Verwey-Overbeek Theory.
    Tang H; Zhao Y; Yang X; Liu D; Shao P; Zhu Z; Shan S; Cui F; Xing B
    Environ Sci Technol; 2017 Sep; 51(17):9674-9682. PubMed ID: 28771343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study.
    Wu QY; Lan JH; Wang CZ; Xiao CL; Zhao YL; Wei YZ; Chai ZF; Shi WQ
    J Phys Chem A; 2014 Mar; 118(11):2149-58. PubMed ID: 24592814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzo[a]pyrene and heavy metal ion adsorption on nanoplastics regulated by humic acid: Cooperation/competition mechanisms revealed by molecular dynamics simulations.
    Feng H; Liu Y; Xu Y; Li S; Liu X; Dai Y; Zhao J; Yue T
    J Hazard Mater; 2022 Feb; 424(Pt B):127431. PubMed ID: 34653861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid.
    Clemente Z; Castro VLSS; Franqui LS; Silva CA; Martinez DST
    Environ Pollut; 2017 Jun; 225():118-128. PubMed ID: 28363143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework.
    Jun BM; Kim S; Kim Y; Her N; Heo J; Han J; Jang M; Park CM; Yoon Y
    Chemosphere; 2019 Sep; 231():82-92. PubMed ID: 31128355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces.
    Kerisit S; Liu C
    Environ Sci Technol; 2014 Apr; 48(7):3899-907. PubMed ID: 24580048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of graphene oxide as an enzyme inhibitor from molecular dynamics simulations.
    Sun X; Feng Z; Hou T; Li Y
    ACS Appl Mater Interfaces; 2014 May; 6(10):7153-63. PubMed ID: 24801143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-transport of U(VI), humic acid and colloidal gibbsite in water-saturated porous media.
    Yang J; Ge M; Jin Q; Chen Z; Guo Z
    Chemosphere; 2019 Sep; 231():405-414. PubMed ID: 31146132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of graphene-based nanomaterial as nanocarrier for adsorption of paclitaxel anticancer drug: a molecular dynamics simulation study.
    Hasanzade Z; Raissi H
    J Mol Model; 2017 Feb; 23(2):36. PubMed ID: 28120117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of humic acid on uranyl sorption onto bentonite at trace uranium levels.
    Ivanov P; Griffiths T; Bryan ND; Bozhikov G; Dmitriev S
    J Environ Monit; 2012 Nov; 14(11):2968-75. PubMed ID: 23001432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    J Mol Graph Model; 2015 Sep; 61():175-85. PubMed ID: 26275931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.