BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30945869)

  • 1. Identification of 4-Hydroxyproline at the Xaa Position in Collagen by Mass Spectrometry.
    van Huizen NA; Burgers PC; Saintmont F; Brocorens P; Gerbaux P; Stingl C; Dekker LJM; IJzermans JNM; Luider TM
    J Proteome Res; 2019 May; 18(5):2045-2051. PubMed ID: 30945869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Analysis of the Positional Distribution of Hydroxyproline in Collagenous Gly-Xaa-Yaa Sequences by LC-MS with Partial Acid Hydrolysis and Precolumn Derivatization.
    Taga Y; Kusubata M; Mizuno K
    Anal Chem; 2020 Jun; 92(12):8427-8434. PubMed ID: 32437599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-depth correlation analysis demonstrates that 4-hydroxyproline at the Yaa position of Gly-Xaa-Yaa repeats dominantly stabilizes collagen triple helix.
    Taga Y; Tanaka K; Hattori S; Mizuno K
    Matrix Biol Plus; 2021 Jun; 10():100067. PubMed ID: 34195597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LC-MS/MS identification of the O-glycosylation and hydroxylation of amino acid residues of collagen α-1 (II) chain from bovine cartilage.
    Song E; Mechref Y
    J Proteome Res; 2013 Aug; 12(8):3599-609. PubMed ID: 23879958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix.
    Chow WY; Bihan D; Forman CJ; Slatter DA; Reid DG; Wales DJ; Farndale RW; Duer MJ
    Sci Rep; 2015 Jul; 5():12556. PubMed ID: 26220399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix.
    Schumacher MA; Mizuno K; Bächinger HP
    J Biol Chem; 2006 Sep; 281(37):27566-74. PubMed ID: 16798737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylation/Hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix.
    Bann JG; Bächinger HP
    J Biol Chem; 2000 Aug; 275(32):24466-9. PubMed ID: 10827193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix.
    Mizuno K; Hayashi T; Peyton DH; Bachinger HP
    J Biol Chem; 2004 Jan; 279(1):282-7. PubMed ID: 14576161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxylation-induced stabilization of the collagen triple helix. Further characterization of peptides with 4(R)-hydroxyproline in the Xaa position.
    Mizuno K; Hayashi T; Bächinger HP
    J Biol Chem; 2003 Aug; 278(34):32373-9. PubMed ID: 12807876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 3-hydroxyproline residues on collagen stability.
    Jenkins CL; Bretscher LE; Guzei IA; Raines RT
    J Am Chem Soc; 2003 May; 125(21):6422-7. PubMed ID: 12785781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 A resolution shows up-puckering of the proline ring in the Xaa position.
    Schumacher M; Mizuno K; Bächinger HP
    J Biol Chem; 2005 May; 280(21):20397-403. PubMed ID: 15784619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxylation of recombinant human collagen type I alpha 1 in transgenic maize co-expressed with a recombinant human prolyl 4-hydroxylase.
    Xu X; Gan Q; Clough RC; Pappu KM; Howard JA; Baez JA; Wang K
    BMC Biotechnol; 2011 Jun; 11():69. PubMed ID: 21702901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of hydroxyproline in collagen hydrolysates.
    Langrock T; Hoffmann R
    Methods Mol Biol; 2012; 828():271-80. PubMed ID: 22125151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Hydroxyproline in Collagen Hydrolysates.
    Langrock T; Hoffmann R
    Methods Mol Biol; 2019; 2030():47-56. PubMed ID: 31347109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen prolyl 4-hydroxylase isoenzymes I and II have sequence specificity towards different X-Pro-Gly triplets.
    Salo AM; Rappu P; Koski MK; Karjalainen E; Izzi V; Drushinin K; Miinalainen I; Käpylä J; Heino J; Myllyharju J
    Matrix Biol; 2024 Jan; 125():73-87. PubMed ID: 38081527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomic profiling of extracellular matrix and site-specific collagen post-translational modifications in an
    Merl-Pham J; Basak T; Knüppel L; Ramanujam D; Athanason M; Behr J; Engelhardt S; Eickelberg O; Hauck SM; Vanacore R; Staab-Weijnitz CA
    Matrix Biol Plus; 2019 Feb; 1():100005. PubMed ID: 33543004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence dependence of the folding of collagen-like peptides. Single amino acids affect the rate of triple-helix nucleation.
    Ackerman MS; Bhate M; Shenoy N; Beck K; Ramshaw JA; Brodsky B
    J Biol Chem; 1999 Mar; 274(12):7668-73. PubMed ID: 10075654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental Stage-dependent Regulation of Prolyl 3-Hydroxylation in Tendon Type I Collagen.
    Taga Y; Kusubata M; Ogawa-Goto K; Hattori S
    J Biol Chem; 2016 Jan; 291(2):837-47. PubMed ID: 26567337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A (4R)- or a (4S)-fluoroproline residue in position Xaa of the (Xaa-Yaa-Gly) collagen repeat severely affects triple-helix formation.
    Barth D; Milbradt AG; Renner C; Moroder L
    Chembiochem; 2004 Jan; 5(1):79-86. PubMed ID: 14695516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel 3-hydroxyproline (3Hyp)-rich motif marks the triple-helical C terminus of tendon type I collagen.
    Eyre DR; Weis M; Hudson DM; Wu JJ; Kim L
    J Biol Chem; 2011 Mar; 286(10):7732-7736. PubMed ID: 21239503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.