These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30945873)
1. Distortion and a Strong Hydrogen Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2. Nishimura N; Mizuno M; Kandori H; Mizutani Y J Phys Chem B; 2019 Apr; 123(16):3430-3440. PubMed ID: 30945873 [TBL] [Abstract][Full Text] [Related]
2. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K. Ono H; Inoue K; Abe-Yoshizumi R; Kandori H J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264 [TBL] [Abstract][Full Text] [Related]
3. Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis. Mizuno M; Nakajima A; Kandori H; Mizutani Y J Phys Chem A; 2018 Mar; 122(9):2411-2423. PubMed ID: 29460629 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen-bonding network at the cytoplasmic region of a light-driven sodium pump rhodopsin KR2. Tomida S; Ito S; Inoue K; Kandori H Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):684-691. PubMed ID: 29852143 [TBL] [Abstract][Full Text] [Related]
5. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin. Shigeta A; Ito S; Inoue K; Okitsu T; Wada A; Kandori H; Kawamura I Biochemistry; 2017 Jan; 56(4):543-550. PubMed ID: 28040890 [TBL] [Abstract][Full Text] [Related]
6. Allosteric Communication with the Retinal Chromophore upon Ion Binding in a Light-Driven Sodium Ion-Pumping Rhodopsin. Otomo A; Mizuno M; Inoue K; Kandori H; Mizutani Y Biochemistry; 2020 Feb; 59(4):520-529. PubMed ID: 31887021 [No Abstract] [Full Text] [Related]
7. Covalent Bond between the Lys-255 Residue and the Main Chain Is Responsible for Stable Retinal Chromophore Binding and Sodium-Pumping Activity of Ochiai S; Ichikawa Y; Tomida S; Furutani Y Biochemistry; 2023 Jun; 62(12):1849-1857. PubMed ID: 37243673 [TBL] [Abstract][Full Text] [Related]
8. Solid-state NMR analysis of the sodium pump Krokinobacter rhodopsin 2 and its H30A mutant. Kaur J; Kriebel CN; Eberhardt P; Jakdetchai O; Leeder AJ; Weber I; Brown LJ; Brown RCD; Becker-Baldus J; Bamann C; Wachtveitl J; Glaubitz C J Struct Biol; 2019 Apr; 206(1):55-65. PubMed ID: 29879487 [TBL] [Abstract][Full Text] [Related]
9. Identification of intermediate conformations in the photocycle of the light-driven sodium-pumping rhodopsin KR2. Tsujimura M; Ishikita H J Biol Chem; 2021; 296():100459. PubMed ID: 33639164 [TBL] [Abstract][Full Text] [Related]
10. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus. Kajimoto K; Kikukawa T; Nakashima H; Yamaryo H; Saito Y; Fujisawa T; Demura M; Unno M J Phys Chem B; 2017 May; 121(17):4431-4437. PubMed ID: 28421760 [TBL] [Abstract][Full Text] [Related]
11. Infrared spectroscopic analysis on structural changes around the protonated Schiff base upon retinal isomerization in light-driven sodium pump KR2. Tomida S; Ito S; Mato T; Furutani Y; Inoue K; Kandori H Biochim Biophys Acta Bioenerg; 2020 Jul; 1861(7):148190. PubMed ID: 32194062 [TBL] [Abstract][Full Text] [Related]
12. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. Miyahara T; Nakatsuji H J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358 [TBL] [Abstract][Full Text] [Related]
13. Time-resolved FTIR study of light-driven sodium pump rhodopsins. Chen HF; Inoue K; Ono H; Abe-Yoshizumi R; Wada A; Kandori H Phys Chem Chem Phys; 2018 Jul; 20(26):17694-17704. PubMed ID: 29938283 [TBL] [Abstract][Full Text] [Related]
14. Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins. Shionoya T; Singh M; Mizuno M; Kandori H; Mizutani Y Biochemistry; 2021 Oct; 60(41):3050-3057. PubMed ID: 34601881 [TBL] [Abstract][Full Text] [Related]
15. Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle. Balashov SP; Imasheva ES; Dioumaev AK; Wang JM; Jung KH; Lanyi JK Biochemistry; 2014 Dec; 53(48):7549-61. PubMed ID: 25375769 [TBL] [Abstract][Full Text] [Related]
16. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941 [TBL] [Abstract][Full Text] [Related]
17. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates. Urui T; Mizuno M; Otomo A; Kandori H; Mizutani Y J Phys Chem B; 2021 Jul; 125(26):7155-7162. PubMed ID: 34167296 [TBL] [Abstract][Full Text] [Related]
18. Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR. Jakdetchai O; Eberhardt P; Asido M; Kaur J; Kriebel CN; Mao J; Leeder AJ; Brown LJ; Brown RCD; Becker-Baldus J; Bamann C; Wachtveitl J; Glaubitz C Sci Adv; 2021 Mar; 7(11):. PubMed ID: 33712469 [TBL] [Abstract][Full Text] [Related]
19. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Hontani Y; Inoue K; Kloz M; Kato Y; Kandori H; Kennis JT Phys Chem Chem Phys; 2016 Sep; 18(35):24729-36. PubMed ID: 27550793 [TBL] [Abstract][Full Text] [Related]