These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30946585)

  • 1. Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water.
    Yun Y; Khaliullin RZ; Jung Y
    J Phys Chem Lett; 2019 Apr; 10(8):2008-2016. PubMed ID: 30946585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water.
    Kühne TD; Khaliullin RZ
    J Am Chem Soc; 2014 Mar; 136(9):3395-9. PubMed ID: 24521433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Square ice in graphene nanocapillaries.
    Algara-Siller G; Lehtinen O; Wang FC; Nair RR; Kaiser U; Wu HA; Geim AK; Grigorieva IV
    Nature; 2015 Mar; 519(7544):443-5. PubMed ID: 25810206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?
    Zhu W; Zhao WH; Wang L; Yin D; Jia M; Yang J; Zeng XC; Yuan LF
    Phys Chem Chem Phys; 2016 Jun; 18(21):14216-21. PubMed ID: 27063210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water: a responsive small molecule.
    Shultz MJ; Vu TH; Meyer B; Bisson P
    Acc Chem Res; 2012 Jan; 45(1):15-22. PubMed ID: 22136280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous behavior of proton zero point motion in water confined in carbon nanotubes.
    Reiter G; Burnham C; Homouz D; Platzman PM; Mayers J; Abdul-Redah T; Moravsky AP; Li JC; Loong CK; Kolesnikov AI
    Phys Rev Lett; 2006 Dec; 97(24):247801. PubMed ID: 17280326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a two-dimensional helical square tube ice in hydrophobic nanoslit using the TIP5P water model.
    Li J; Zhu C; Zhao W; Gao Y; Bai J; Jiang J; Zeng XC
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38661200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional water and ice layers: neutron diffraction studies at 278, 263, and 20 k.
    Janiak C; Scharmann TG; Mason SA
    J Am Chem Soc; 2002 Nov; 124(47):14010-1. PubMed ID: 12440896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined Water: Structure, Dynamics, and Thermodynamics.
    Chakraborty S; Kumar H; Dasgupta C; Maiti PK
    Acc Chem Res; 2017 Sep; 50(9):2139-2146. PubMed ID: 28809537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of the first coordination shell in liquid water.
    Wernet P; Nordlund D; Bergmann U; Cavalleri M; Odelius M; Ogasawara H; Näslund LA; Hirsch TK; Ojamäe L; Glatzel P; Pettersson LG; Nilsson A
    Science; 2004 May; 304(5673):995-9. PubMed ID: 15060287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes.
    Raju M; van Duin A; Ihme M
    Sci Rep; 2018 Mar; 8(1):3851. PubMed ID: 29497132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of encapsulated water inside Mo132 cavities.
    Garcia-Ratés M; Miró P; Poblet JM; Bo C; Avalos JB
    J Phys Chem B; 2011 May; 115(19):5980-92. PubMed ID: 21510629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of spherical ice-shells inside carbon fullerenes.
    Tutchton RM; Wu Z
    Phys Chem Chem Phys; 2017 Nov; 19(45):30726-30733. PubMed ID: 29125155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.
    Pugliese P; Conde MM; Rovere M; Gallo P
    J Phys Chem B; 2017 Nov; 121(45):10371-10381. PubMed ID: 29040802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of ordered ice nanotubes inside carbon nanotubes.
    Koga K; Gao GT; Tanaka H; Zeng XC
    Nature; 2001 Aug; 412(6849):802-5. PubMed ID: 11518961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.
    Roberts ST; Ramasesha K; Tokmakoff A
    Acc Chem Res; 2009 Sep; 42(9):1239-49. PubMed ID: 19585982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Electron Density of a Water Molecule Encapsulated by Two Cholic Acid Residues.
    Vázquez-Tato MP; Seijas JA; Meijide F; de Frutos S; Vázquez Tato J
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.