These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30946585)

  • 21. Simple computer experiments with ordinary ice.
    Shulgin IL; Ruckenstein E
    J Phys Chem B; 2006 Oct; 110(42):21381-5. PubMed ID: 17048969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The anomalously high melting temperature of bilayer ice.
    Kastelowitz N; Johnston JC; Molinero V
    J Chem Phys; 2010 Mar; 132(12):124511. PubMed ID: 20370137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of ice confined in silica nanopores.
    Mohammed S; Asgar H; Benmore CJ; Gadikota G
    Phys Chem Chem Phys; 2021 Jun; 23(22):12706-12717. PubMed ID: 34037014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Why different water models predict different structures under 2D confinement.
    Dix J; Lue L; Carbone P
    J Comput Chem; 2018 Sep; 39(25):2051-2059. PubMed ID: 30226923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the Structure of Liquid Water from Nuclear Quantum Effects on the Density and Compressibility of Ice Polymorphs.
    Pamuk B; Allen PB; Fernández-Serra MV
    J Phys Chem B; 2018 May; 122(21):5694-5706. PubMed ID: 29490459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen-bonded structures and low temperature transitions of the confined water in subnano channels.
    Chen S; Wang J; Li X; Lv H; Wang Q; Dong E; Yang X; Liu R; Liu B
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():122912. PubMed ID: 37348273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structures of water molecules in carbon nanotubes under electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water.
    Kühne TD; Khaliullin RZ
    Nat Commun; 2013; 4():1450. PubMed ID: 23385594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electric-field-induced phase transition of confined water nanofilms between two graphene sheets.
    Qian Z; Wei G
    J Phys Chem A; 2014 Oct; 118(39):8922-8. PubMed ID: 24831927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations.
    Bankura A; Chandra A
    J Chem Phys; 2015 Jan; 142(4):044701. PubMed ID: 25637997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluctuations and local ice structure in model supercooled water.
    Overduin SD; Patey GN
    J Chem Phys; 2015 Sep; 143(9):094504. PubMed ID: 26342374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrogen-bond-reversal symmetry and its violation in ice nanotubes.
    Kirov MV
    Acta Crystallogr A Found Adv; 2016 May; 72(Pt 3):395-405. PubMed ID: 27126117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cooperativity in ordinary ice and breaking of hydrogen bonds.
    Ruckenstein E; Shulgin IL; Shulgin LI
    J Phys Chem B; 2007 Jun; 111(25):7114-21. PubMed ID: 17550284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.
    Deshmukh S; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2014 Jun; 15(8):1632-42. PubMed ID: 24715572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Adsorbed Alcohol Layers on the Behavior of Water Molecules Confined in a Graphene Nanoslit: A Molecular Dynamics Study.
    Gao Q; Zhu Y; Ruan Y; Zhang Y; Zhu W; Lu X; Lu L
    Langmuir; 2017 Oct; 33(42):11467-11474. PubMed ID: 28859479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroscopic fingerprints in the low frequency spectrum of ice (Ih), clathrate hydrates, supercooled water, and hydrophobic hydration reveal similarities in the hydrogen bond network motifs.
    Funke S; Sebastiani F; Schwaab G; Havenith M
    J Chem Phys; 2019 Jun; 150(22):224505. PubMed ID: 31202220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ice-Liquid Oscillations in Nanoconfined Water.
    Kastelowitz N; Molinero V
    ACS Nano; 2018 Aug; 12(8):8234-8239. PubMed ID: 30024723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrafast superheating and melting of bulk ice.
    Iglev H; Schmeisser M; Simeonidis K; Thaller A; Laubereau A
    Nature; 2006 Jan; 439(7073):183-6. PubMed ID: 16407948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.