These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water. Foroutan M; Fatemi SM; Shokouh F J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448 [TBL] [Abstract][Full Text] [Related]
25. Structure of ice confined in silica nanopores. Mohammed S; Asgar H; Benmore CJ; Gadikota G Phys Chem Chem Phys; 2021 Jun; 23(22):12706-12717. PubMed ID: 34037014 [TBL] [Abstract][Full Text] [Related]
26. Why different water models predict different structures under 2D confinement. Dix J; Lue L; Carbone P J Comput Chem; 2018 Sep; 39(25):2051-2059. PubMed ID: 30226923 [TBL] [Abstract][Full Text] [Related]
27. Insights into the Structure of Liquid Water from Nuclear Quantum Effects on the Density and Compressibility of Ice Polymorphs. Pamuk B; Allen PB; Fernández-Serra MV J Phys Chem B; 2018 May; 122(21):5694-5706. PubMed ID: 29490459 [TBL] [Abstract][Full Text] [Related]
28. Hydrogen-bonded structures and low temperature transitions of the confined water in subnano channels. Chen S; Wang J; Li X; Lv H; Wang Q; Dong E; Yang X; Liu R; Liu B Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():122912. PubMed ID: 37348273 [TBL] [Abstract][Full Text] [Related]
29. Structures of water molecules in carbon nanotubes under electric fields. Winarto ; Takaiwa D; Yamamoto E; Yasuoka K J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597 [TBL] [Abstract][Full Text] [Related]
30. Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water. Kühne TD; Khaliullin RZ Nat Commun; 2013; 4():1450. PubMed ID: 23385594 [TBL] [Abstract][Full Text] [Related]
31. Electric-field-induced phase transition of confined water nanofilms between two graphene sheets. Qian Z; Wei G J Phys Chem A; 2014 Oct; 118(39):8922-8. PubMed ID: 24831927 [TBL] [Abstract][Full Text] [Related]
32. Proton transfer through hydrogen bonds in two-dimensional water layers: a theoretical study based on ab initio and quantum-classical simulations. Bankura A; Chandra A J Chem Phys; 2015 Jan; 142(4):044701. PubMed ID: 25637997 [TBL] [Abstract][Full Text] [Related]
33. Fluctuations and local ice structure in model supercooled water. Overduin SD; Patey GN J Chem Phys; 2015 Sep; 143(9):094504. PubMed ID: 26342374 [TBL] [Abstract][Full Text] [Related]
34. Hydrogen-bond-reversal symmetry and its violation in ice nanotubes. Kirov MV Acta Crystallogr A Found Adv; 2016 May; 72(Pt 3):395-405. PubMed ID: 27126117 [TBL] [Abstract][Full Text] [Related]
35. Cooperativity in ordinary ice and breaking of hydrogen bonds. Ruckenstein E; Shulgin IL; Shulgin LI J Phys Chem B; 2007 Jun; 111(25):7114-21. PubMed ID: 17550284 [TBL] [Abstract][Full Text] [Related]
36. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure. Deshmukh S; Kamath G; Sankaranarayanan SK Chemphyschem; 2014 Jun; 15(8):1632-42. PubMed ID: 24715572 [TBL] [Abstract][Full Text] [Related]
37. Effect of Adsorbed Alcohol Layers on the Behavior of Water Molecules Confined in a Graphene Nanoslit: A Molecular Dynamics Study. Gao Q; Zhu Y; Ruan Y; Zhang Y; Zhu W; Lu X; Lu L Langmuir; 2017 Oct; 33(42):11467-11474. PubMed ID: 28859479 [TBL] [Abstract][Full Text] [Related]
38. Spectroscopic fingerprints in the low frequency spectrum of ice (Ih), clathrate hydrates, supercooled water, and hydrophobic hydration reveal similarities in the hydrogen bond network motifs. Funke S; Sebastiani F; Schwaab G; Havenith M J Chem Phys; 2019 Jun; 150(22):224505. PubMed ID: 31202220 [TBL] [Abstract][Full Text] [Related]